Cargando…

Spiking neurons from tunable Gaussian heterojunction transistors

Spiking neural networks exploit spatiotemporal processing, spiking sparsity, and high interneuron bandwidth to maximize the energy efficiency of neuromorphic computing. While conventional silicon-based technology can be used in this context, the resulting neuron-synapse circuits require multiple tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Beck, Megan E., Shylendra, Ahish, Sangwan, Vinod K., Guo, Silu, Gaviria Rojas, William A., Yoo, Hocheon, Bergeron, Hadallia, Su, Katherine, Trivedi, Amit R., Hersam, Mark C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099079/
https://www.ncbi.nlm.nih.gov/pubmed/32218433
http://dx.doi.org/10.1038/s41467-020-15378-7
_version_ 1783511289857835008
author Beck, Megan E.
Shylendra, Ahish
Sangwan, Vinod K.
Guo, Silu
Gaviria Rojas, William A.
Yoo, Hocheon
Bergeron, Hadallia
Su, Katherine
Trivedi, Amit R.
Hersam, Mark C.
author_facet Beck, Megan E.
Shylendra, Ahish
Sangwan, Vinod K.
Guo, Silu
Gaviria Rojas, William A.
Yoo, Hocheon
Bergeron, Hadallia
Su, Katherine
Trivedi, Amit R.
Hersam, Mark C.
author_sort Beck, Megan E.
collection PubMed
description Spiking neural networks exploit spatiotemporal processing, spiking sparsity, and high interneuron bandwidth to maximize the energy efficiency of neuromorphic computing. While conventional silicon-based technology can be used in this context, the resulting neuron-synapse circuits require multiple transistors and complicated layouts that limit integration density. Here, we demonstrate unprecedented electrostatic control of dual-gated Gaussian heterojunction transistors for simplified spiking neuron implementation. These devices employ wafer-scale mixed-dimensional van der Waals heterojunctions consisting of chemical vapor deposited monolayer molybdenum disulfide and solution-processed semiconducting single-walled carbon nanotubes to emulate the spike-generating ion channels in biological neurons. Circuits based on these dual-gated Gaussian devices enable a variety of biological spiking responses including phasic spiking, delayed spiking, and tonic bursting. In addition to neuromorphic computing, the tunable Gaussian response has significant implications for a range of other applications including telecommunications, computer vision, and natural language processing.
format Online
Article
Text
id pubmed-7099079
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-70990792020-03-30 Spiking neurons from tunable Gaussian heterojunction transistors Beck, Megan E. Shylendra, Ahish Sangwan, Vinod K. Guo, Silu Gaviria Rojas, William A. Yoo, Hocheon Bergeron, Hadallia Su, Katherine Trivedi, Amit R. Hersam, Mark C. Nat Commun Article Spiking neural networks exploit spatiotemporal processing, spiking sparsity, and high interneuron bandwidth to maximize the energy efficiency of neuromorphic computing. While conventional silicon-based technology can be used in this context, the resulting neuron-synapse circuits require multiple transistors and complicated layouts that limit integration density. Here, we demonstrate unprecedented electrostatic control of dual-gated Gaussian heterojunction transistors for simplified spiking neuron implementation. These devices employ wafer-scale mixed-dimensional van der Waals heterojunctions consisting of chemical vapor deposited monolayer molybdenum disulfide and solution-processed semiconducting single-walled carbon nanotubes to emulate the spike-generating ion channels in biological neurons. Circuits based on these dual-gated Gaussian devices enable a variety of biological spiking responses including phasic spiking, delayed spiking, and tonic bursting. In addition to neuromorphic computing, the tunable Gaussian response has significant implications for a range of other applications including telecommunications, computer vision, and natural language processing. Nature Publishing Group UK 2020-03-26 /pmc/articles/PMC7099079/ /pubmed/32218433 http://dx.doi.org/10.1038/s41467-020-15378-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Beck, Megan E.
Shylendra, Ahish
Sangwan, Vinod K.
Guo, Silu
Gaviria Rojas, William A.
Yoo, Hocheon
Bergeron, Hadallia
Su, Katherine
Trivedi, Amit R.
Hersam, Mark C.
Spiking neurons from tunable Gaussian heterojunction transistors
title Spiking neurons from tunable Gaussian heterojunction transistors
title_full Spiking neurons from tunable Gaussian heterojunction transistors
title_fullStr Spiking neurons from tunable Gaussian heterojunction transistors
title_full_unstemmed Spiking neurons from tunable Gaussian heterojunction transistors
title_short Spiking neurons from tunable Gaussian heterojunction transistors
title_sort spiking neurons from tunable gaussian heterojunction transistors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099079/
https://www.ncbi.nlm.nih.gov/pubmed/32218433
http://dx.doi.org/10.1038/s41467-020-15378-7
work_keys_str_mv AT beckmegane spikingneuronsfromtunablegaussianheterojunctiontransistors
AT shylendraahish spikingneuronsfromtunablegaussianheterojunctiontransistors
AT sangwanvinodk spikingneuronsfromtunablegaussianheterojunctiontransistors
AT guosilu spikingneuronsfromtunablegaussianheterojunctiontransistors
AT gaviriarojaswilliama spikingneuronsfromtunablegaussianheterojunctiontransistors
AT yoohocheon spikingneuronsfromtunablegaussianheterojunctiontransistors
AT bergeronhadallia spikingneuronsfromtunablegaussianheterojunctiontransistors
AT sukatherine spikingneuronsfromtunablegaussianheterojunctiontransistors
AT trivediamitr spikingneuronsfromtunablegaussianheterojunctiontransistors
AT hersammarkc spikingneuronsfromtunablegaussianheterojunctiontransistors