Cargando…
Spiking neurons from tunable Gaussian heterojunction transistors
Spiking neural networks exploit spatiotemporal processing, spiking sparsity, and high interneuron bandwidth to maximize the energy efficiency of neuromorphic computing. While conventional silicon-based technology can be used in this context, the resulting neuron-synapse circuits require multiple tra...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099079/ https://www.ncbi.nlm.nih.gov/pubmed/32218433 http://dx.doi.org/10.1038/s41467-020-15378-7 |
_version_ | 1783511289857835008 |
---|---|
author | Beck, Megan E. Shylendra, Ahish Sangwan, Vinod K. Guo, Silu Gaviria Rojas, William A. Yoo, Hocheon Bergeron, Hadallia Su, Katherine Trivedi, Amit R. Hersam, Mark C. |
author_facet | Beck, Megan E. Shylendra, Ahish Sangwan, Vinod K. Guo, Silu Gaviria Rojas, William A. Yoo, Hocheon Bergeron, Hadallia Su, Katherine Trivedi, Amit R. Hersam, Mark C. |
author_sort | Beck, Megan E. |
collection | PubMed |
description | Spiking neural networks exploit spatiotemporal processing, spiking sparsity, and high interneuron bandwidth to maximize the energy efficiency of neuromorphic computing. While conventional silicon-based technology can be used in this context, the resulting neuron-synapse circuits require multiple transistors and complicated layouts that limit integration density. Here, we demonstrate unprecedented electrostatic control of dual-gated Gaussian heterojunction transistors for simplified spiking neuron implementation. These devices employ wafer-scale mixed-dimensional van der Waals heterojunctions consisting of chemical vapor deposited monolayer molybdenum disulfide and solution-processed semiconducting single-walled carbon nanotubes to emulate the spike-generating ion channels in biological neurons. Circuits based on these dual-gated Gaussian devices enable a variety of biological spiking responses including phasic spiking, delayed spiking, and tonic bursting. In addition to neuromorphic computing, the tunable Gaussian response has significant implications for a range of other applications including telecommunications, computer vision, and natural language processing. |
format | Online Article Text |
id | pubmed-7099079 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-70990792020-03-30 Spiking neurons from tunable Gaussian heterojunction transistors Beck, Megan E. Shylendra, Ahish Sangwan, Vinod K. Guo, Silu Gaviria Rojas, William A. Yoo, Hocheon Bergeron, Hadallia Su, Katherine Trivedi, Amit R. Hersam, Mark C. Nat Commun Article Spiking neural networks exploit spatiotemporal processing, spiking sparsity, and high interneuron bandwidth to maximize the energy efficiency of neuromorphic computing. While conventional silicon-based technology can be used in this context, the resulting neuron-synapse circuits require multiple transistors and complicated layouts that limit integration density. Here, we demonstrate unprecedented electrostatic control of dual-gated Gaussian heterojunction transistors for simplified spiking neuron implementation. These devices employ wafer-scale mixed-dimensional van der Waals heterojunctions consisting of chemical vapor deposited monolayer molybdenum disulfide and solution-processed semiconducting single-walled carbon nanotubes to emulate the spike-generating ion channels in biological neurons. Circuits based on these dual-gated Gaussian devices enable a variety of biological spiking responses including phasic spiking, delayed spiking, and tonic bursting. In addition to neuromorphic computing, the tunable Gaussian response has significant implications for a range of other applications including telecommunications, computer vision, and natural language processing. Nature Publishing Group UK 2020-03-26 /pmc/articles/PMC7099079/ /pubmed/32218433 http://dx.doi.org/10.1038/s41467-020-15378-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Beck, Megan E. Shylendra, Ahish Sangwan, Vinod K. Guo, Silu Gaviria Rojas, William A. Yoo, Hocheon Bergeron, Hadallia Su, Katherine Trivedi, Amit R. Hersam, Mark C. Spiking neurons from tunable Gaussian heterojunction transistors |
title | Spiking neurons from tunable Gaussian heterojunction transistors |
title_full | Spiking neurons from tunable Gaussian heterojunction transistors |
title_fullStr | Spiking neurons from tunable Gaussian heterojunction transistors |
title_full_unstemmed | Spiking neurons from tunable Gaussian heterojunction transistors |
title_short | Spiking neurons from tunable Gaussian heterojunction transistors |
title_sort | spiking neurons from tunable gaussian heterojunction transistors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099079/ https://www.ncbi.nlm.nih.gov/pubmed/32218433 http://dx.doi.org/10.1038/s41467-020-15378-7 |
work_keys_str_mv | AT beckmegane spikingneuronsfromtunablegaussianheterojunctiontransistors AT shylendraahish spikingneuronsfromtunablegaussianheterojunctiontransistors AT sangwanvinodk spikingneuronsfromtunablegaussianheterojunctiontransistors AT guosilu spikingneuronsfromtunablegaussianheterojunctiontransistors AT gaviriarojaswilliama spikingneuronsfromtunablegaussianheterojunctiontransistors AT yoohocheon spikingneuronsfromtunablegaussianheterojunctiontransistors AT bergeronhadallia spikingneuronsfromtunablegaussianheterojunctiontransistors AT sukatherine spikingneuronsfromtunablegaussianheterojunctiontransistors AT trivediamitr spikingneuronsfromtunablegaussianheterojunctiontransistors AT hersammarkc spikingneuronsfromtunablegaussianheterojunctiontransistors |