Cargando…
Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging
Using medical images to evaluate disease severity and change over time is a routine and important task in clinical decision making. Grading systems are often used, but are unreliable as domain experts disagree on disease severity category thresholds. These discrete categories also do not reflect the...
Autores principales: | Li, Matthew D., Chang, Ken, Bearce, Ben, Chang, Connie Y., Huang, Ambrose J., Campbell, J. Peter, Brown, James M., Singh, Praveer, Hoebel, Katharina V., Erdoğmuş, Deniz, Ioannidis, Stratis, Palmer, William E., Chiang, Michael F., Kalpathy-Cramer, Jayashree |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099081/ https://www.ncbi.nlm.nih.gov/pubmed/32258430 http://dx.doi.org/10.1038/s41746-020-0255-1 |
Ejemplares similares
-
Plus Disease in Retinopathy of Prematurity: Convolutional Neural Network Performance Using a Combined Neural Network and Feature Extraction Approach
por: Yildiz, Veysi M., et al.
Publicado: (2020) -
Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs using Convolutional Siamese Neural Networks
por: Li, Matthew D., et al.
Publicado: (2020) -
Improved Training Efficiency for Retinopathy of Prematurity Deep Learning Models Using Comparison versus Class Labels
por: Hanif, Adam, et al.
Publicado: (2022) -
Oxygenation Fluctuations Associated with Severe Retinopathy of Prematurity: Insights from a Multimodal Deep Learning Approach
por: Lin, Wei-Chun, et al.
Publicado: (2023) -
Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis
por: Coyner, Aaron S., et al.
Publicado: (2022)