Cargando…
A Lightweight Deep Learning Model for Fast Electrocardiographic Beats Classification With a Wearable Cardiac Monitor: Development and Validation Study
BACKGROUND: Electrocardiographic (ECG) monitors have been widely used for diagnosing cardiac arrhythmias for decades. However, accurate analysis of ECG signals is difficult and time-consuming work because large amounts of beats need to be inspected. In order to enhance ECG beat classification, machi...
Autores principales: | Jeon, Eunjoo, Oh, Kyusam, Kwon, Soonhwan, Son, HyeongGwan, Yun, Yongkeun, Jung, Eun-Soo, Kim, Min Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099397/ https://www.ncbi.nlm.nih.gov/pubmed/32163037 http://dx.doi.org/10.2196/17037 |
Ejemplares similares
-
Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer
por: Joo, Sunghoon, et al.
Publicado: (2021) -
Ambulatory Electrocardiographic Monitoring and Ectopic Beat Detection in Conscious Mice
por: Steijns, Felke, et al.
Publicado: (2020) -
Clinical and electrocardiographic characteristics of infarctional ventricular ectopic beats: An observational study
por: Li, Yuechun, et al.
Publicado: (2017) -
Wearable Piezoelectric-Based System for Continuous Beat-to-Beat Blood Pressure Measurement
por: Wang, Ting-Wei, et al.
Publicado: (2020) -
Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems
por: Dargusch, Matthew, et al.
Publicado: (2020)