Cargando…

A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models

We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin–Huxley and Mor...

Descripción completa

Detalles Bibliográficos
Autores principales: Carlu, M., Chehab, O., Dalla Porta, L., Depannemaecker, D., Héricé, C., Jedynak, M., Köksal Ersöz, E., Muratore, P., Souihel, S., Capone, C., Zerlaut, Y., Destexhe, A., di Volo, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Physiological Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099478/
https://www.ncbi.nlm.nih.gov/pubmed/31851573
http://dx.doi.org/10.1152/jn.00399.2019
_version_ 1783511322018709504
author Carlu, M.
Chehab, O.
Dalla Porta, L.
Depannemaecker, D.
Héricé, C.
Jedynak, M.
Köksal Ersöz, E.
Muratore, P.
Souihel, S.
Capone, C.
Zerlaut, Y.
Destexhe, A.
di Volo, M.
author_facet Carlu, M.
Chehab, O.
Dalla Porta, L.
Depannemaecker, D.
Héricé, C.
Jedynak, M.
Köksal Ersöz, E.
Muratore, P.
Souihel, S.
Capone, C.
Zerlaut, Y.
Destexhe, A.
di Volo, M.
author_sort Carlu, M.
collection PubMed
description We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin–Huxley and Morris–Lecar models. We show that the resulting mean-field models are capable of predicting the correct spontaneous activity of both excitatory and inhibitory neurons in asynchronous irregular regimes, typical of cortical dynamics. Moreover, it is possible to quantitatively predict the population response to external stimuli in the form of external spike trains. This mean-field formalism therefore provides a paradigm to bridge the scale between population dynamics and the microscopic complexity of the individual cells physiology. NEW & NOTEWORTHY Population models are a powerful mathematical tool to study the dynamics of neuronal networks and to simulate the brain at macroscopic scales. We present a mean-field model capable of quantitatively predicting the temporal dynamics of a network of complex spiking neuronal models, from Integrate-and-Fire to Hodgkin–Huxley, thus linking population models to neurons electrophysiology. This opens a perspective on generating biologically realistic mean-field models from electrophysiological recordings.
format Online
Article
Text
id pubmed-7099478
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Physiological Society
record_format MEDLINE/PubMed
spelling pubmed-70994782021-03-01 A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models Carlu, M. Chehab, O. Dalla Porta, L. Depannemaecker, D. Héricé, C. Jedynak, M. Köksal Ersöz, E. Muratore, P. Souihel, S. Capone, C. Zerlaut, Y. Destexhe, A. di Volo, M. J Neurophysiol Research Article We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin–Huxley and Morris–Lecar models. We show that the resulting mean-field models are capable of predicting the correct spontaneous activity of both excitatory and inhibitory neurons in asynchronous irregular regimes, typical of cortical dynamics. Moreover, it is possible to quantitatively predict the population response to external stimuli in the form of external spike trains. This mean-field formalism therefore provides a paradigm to bridge the scale between population dynamics and the microscopic complexity of the individual cells physiology. NEW & NOTEWORTHY Population models are a powerful mathematical tool to study the dynamics of neuronal networks and to simulate the brain at macroscopic scales. We present a mean-field model capable of quantitatively predicting the temporal dynamics of a network of complex spiking neuronal models, from Integrate-and-Fire to Hodgkin–Huxley, thus linking population models to neurons electrophysiology. This opens a perspective on generating biologically realistic mean-field models from electrophysiological recordings. American Physiological Society 2020-03-01 2019-12-18 /pmc/articles/PMC7099478/ /pubmed/31851573 http://dx.doi.org/10.1152/jn.00399.2019 Text en Copyright © 2020 the American Physiological Society http://creativecommons.org/licenses/by/4.0/deed.en_US Licensed under Creative Commons Attribution CC-BY 4.0 (http://creativecommons.org/licenses/by/4.0/deed.en_US) : © the American Physiological Society.
spellingShingle Research Article
Carlu, M.
Chehab, O.
Dalla Porta, L.
Depannemaecker, D.
Héricé, C.
Jedynak, M.
Köksal Ersöz, E.
Muratore, P.
Souihel, S.
Capone, C.
Zerlaut, Y.
Destexhe, A.
di Volo, M.
A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models
title A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models
title_full A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models
title_fullStr A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models
title_full_unstemmed A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models
title_short A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models
title_sort mean-field approach to the dynamics of networks of complex neurons, from nonlinear integrate-and-fire to hodgkin–huxley models
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099478/
https://www.ncbi.nlm.nih.gov/pubmed/31851573
http://dx.doi.org/10.1152/jn.00399.2019
work_keys_str_mv AT carlum ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT chehabo ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT dallaportal ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT depannemaeckerd ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT hericec ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT jedynakm ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT koksalersoze ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT muratorep ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT souihels ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT caponec ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT zerlauty ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT destexhea ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT divolom ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT carlum meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT chehabo meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT dallaportal meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT depannemaeckerd meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT hericec meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT jedynakm meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT koksalersoze meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT muratorep meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT souihels meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT caponec meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT zerlauty meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT destexhea meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels
AT divolom meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels