Cargando…
A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models
We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin–Huxley and Mor...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099478/ https://www.ncbi.nlm.nih.gov/pubmed/31851573 http://dx.doi.org/10.1152/jn.00399.2019 |
_version_ | 1783511322018709504 |
---|---|
author | Carlu, M. Chehab, O. Dalla Porta, L. Depannemaecker, D. Héricé, C. Jedynak, M. Köksal Ersöz, E. Muratore, P. Souihel, S. Capone, C. Zerlaut, Y. Destexhe, A. di Volo, M. |
author_facet | Carlu, M. Chehab, O. Dalla Porta, L. Depannemaecker, D. Héricé, C. Jedynak, M. Köksal Ersöz, E. Muratore, P. Souihel, S. Capone, C. Zerlaut, Y. Destexhe, A. di Volo, M. |
author_sort | Carlu, M. |
collection | PubMed |
description | We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin–Huxley and Morris–Lecar models. We show that the resulting mean-field models are capable of predicting the correct spontaneous activity of both excitatory and inhibitory neurons in asynchronous irregular regimes, typical of cortical dynamics. Moreover, it is possible to quantitatively predict the population response to external stimuli in the form of external spike trains. This mean-field formalism therefore provides a paradigm to bridge the scale between population dynamics and the microscopic complexity of the individual cells physiology. NEW & NOTEWORTHY Population models are a powerful mathematical tool to study the dynamics of neuronal networks and to simulate the brain at macroscopic scales. We present a mean-field model capable of quantitatively predicting the temporal dynamics of a network of complex spiking neuronal models, from Integrate-and-Fire to Hodgkin–Huxley, thus linking population models to neurons electrophysiology. This opens a perspective on generating biologically realistic mean-field models from electrophysiological recordings. |
format | Online Article Text |
id | pubmed-7099478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Physiological Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70994782021-03-01 A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models Carlu, M. Chehab, O. Dalla Porta, L. Depannemaecker, D. Héricé, C. Jedynak, M. Köksal Ersöz, E. Muratore, P. Souihel, S. Capone, C. Zerlaut, Y. Destexhe, A. di Volo, M. J Neurophysiol Research Article We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin–Huxley and Morris–Lecar models. We show that the resulting mean-field models are capable of predicting the correct spontaneous activity of both excitatory and inhibitory neurons in asynchronous irregular regimes, typical of cortical dynamics. Moreover, it is possible to quantitatively predict the population response to external stimuli in the form of external spike trains. This mean-field formalism therefore provides a paradigm to bridge the scale between population dynamics and the microscopic complexity of the individual cells physiology. NEW & NOTEWORTHY Population models are a powerful mathematical tool to study the dynamics of neuronal networks and to simulate the brain at macroscopic scales. We present a mean-field model capable of quantitatively predicting the temporal dynamics of a network of complex spiking neuronal models, from Integrate-and-Fire to Hodgkin–Huxley, thus linking population models to neurons electrophysiology. This opens a perspective on generating biologically realistic mean-field models from electrophysiological recordings. American Physiological Society 2020-03-01 2019-12-18 /pmc/articles/PMC7099478/ /pubmed/31851573 http://dx.doi.org/10.1152/jn.00399.2019 Text en Copyright © 2020 the American Physiological Society http://creativecommons.org/licenses/by/4.0/deed.en_US Licensed under Creative Commons Attribution CC-BY 4.0 (http://creativecommons.org/licenses/by/4.0/deed.en_US) : © the American Physiological Society. |
spellingShingle | Research Article Carlu, M. Chehab, O. Dalla Porta, L. Depannemaecker, D. Héricé, C. Jedynak, M. Köksal Ersöz, E. Muratore, P. Souihel, S. Capone, C. Zerlaut, Y. Destexhe, A. di Volo, M. A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models |
title | A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models |
title_full | A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models |
title_fullStr | A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models |
title_full_unstemmed | A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models |
title_short | A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models |
title_sort | mean-field approach to the dynamics of networks of complex neurons, from nonlinear integrate-and-fire to hodgkin–huxley models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099478/ https://www.ncbi.nlm.nih.gov/pubmed/31851573 http://dx.doi.org/10.1152/jn.00399.2019 |
work_keys_str_mv | AT carlum ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT chehabo ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT dallaportal ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT depannemaeckerd ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT hericec ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT jedynakm ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT koksalersoze ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT muratorep ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT souihels ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT caponec ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT zerlauty ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT destexhea ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT divolom ameanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT carlum meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT chehabo meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT dallaportal meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT depannemaeckerd meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT hericec meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT jedynakm meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT koksalersoze meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT muratorep meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT souihels meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT caponec meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT zerlauty meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT destexhea meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels AT divolom meanfieldapproachtothedynamicsofnetworksofcomplexneuronsfromnonlinearintegrateandfiretohodgkinhuxleymodels |