Cargando…
Improved computer-aided detection of pulmonary nodules via deep learning in the sinogram domain
Computer aided detection (CADe) of pulmonary nodules plays an important role in assisting radiologists’ diagnosis and alleviating interpretation burden for lung cancer. Current CADe systems, aiming at simulating radiologists’ examination procedure, are built upon computer tomography (CT) images with...
Autores principales: | Gao, Yongfeng, Tan, Jiaxing, Liang, Zhengrong, Li, Lihong, Huo, Yumei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099542/ https://www.ncbi.nlm.nih.gov/pubmed/32240409 http://dx.doi.org/10.1186/s42492-019-0029-2 |
Ejemplares similares
-
Completion of Metal-Damaged Traces Based on Deep Learning in Sinogram Domain for Metal Artifacts Reduction in CT Images
por: Zhu, Linlin, et al.
Publicado: (2021) -
Computer-aided classification of lung nodules on computed tomography images via deep learning technique
por: Hua, Kai-Lung, et al.
Publicado: (2015) -
A sinogram denoising algorithm for low-dose computed tomography
por: Karimi, Davood, et al.
Publicado: (2016) -
An Adaptive Learning Model for Multiscale Texture Features in Polyp Classification via Computed Tomographic Colonography
por: Cao, Weiguo, et al.
Publicado: (2022) -
Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans
por: Cheng, Jie-Zhi, et al.
Publicado: (2016)