Cargando…

Scalable point cloud meshing for image-based large-scale 3D modeling

Image-based 3D modeling is an effective method for reconstructing large-scale scenes, especially city-level scenarios. In the image-based modeling pipeline, obtaining a watertight mesh model from a noisy multi-view stereo point cloud is a key step toward ensuring model quality. However, some state-o...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Jiali, Shen, Shuhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099569/
https://www.ncbi.nlm.nih.gov/pubmed/32240393
http://dx.doi.org/10.1186/s42492-019-0020-y
Descripción
Sumario:Image-based 3D modeling is an effective method for reconstructing large-scale scenes, especially city-level scenarios. In the image-based modeling pipeline, obtaining a watertight mesh model from a noisy multi-view stereo point cloud is a key step toward ensuring model quality. However, some state-of-the-art methods rely on the global Delaunay-based optimization formed by all the points and cameras; thus, they encounter scaling problems when dealing with large scenes. To circumvent these limitations, this study proposes a scalable point-cloud meshing approach to aid the reconstruction of city-scale scenes with minimal time consumption and memory usage. Firstly, the entire scene is divided along the x and y axes into several overlapping chunks so that each chunk can satisfy the memory limit. Then, the Delaunay-based optimization is performed to extract meshes for each chunk in parallel. Finally, the local meshes are merged together by resolving local inconsistencies in the overlapping areas between the chunks. We test the proposed method on three city-scale scenes with hundreds of millions of points and thousands of images, and demonstrate its scalability, accuracy, and completeness, compared with the state-of-the-art methods.