Cargando…
Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans
Many bacterial pathogens display glycosylated surface structures that contribute to virulence, and targeting these structures is a viable strategy for pathogen control. The foodborne pathogen Campylobacter jejuni expresses a vast diversity of flagellar glycans, and flagellar glycosylation is essenti...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099621/ https://www.ncbi.nlm.nih.gov/pubmed/32265863 http://dx.doi.org/10.3389/fmicb.2020.00397 |
_version_ | 1783511342182825984 |
---|---|
author | Sacher, Jessica C. Shajahan, Asif Butcher, James Patry, Robert T. Flint, Annika Hendrixson, David R. Stintzi, Alain Azadi, Parastoo Szymanski, Christine M. |
author_facet | Sacher, Jessica C. Shajahan, Asif Butcher, James Patry, Robert T. Flint, Annika Hendrixson, David R. Stintzi, Alain Azadi, Parastoo Szymanski, Christine M. |
author_sort | Sacher, Jessica C. |
collection | PubMed |
description | Many bacterial pathogens display glycosylated surface structures that contribute to virulence, and targeting these structures is a viable strategy for pathogen control. The foodborne pathogen Campylobacter jejuni expresses a vast diversity of flagellar glycans, and flagellar glycosylation is essential for its virulence. Little is known about why C. jejuni encodes such a diverse set of flagellar glycans, but it has been hypothesized that evolutionary pressure from bacteriophages (phages) may have contributed to this diversity. However, interactions between Campylobacter phages and host flagellar glycans have not been characterized in detail. Previously, we observed that Gp047 (now renamed FlaGrab), a conserved Campylobacter phage protein, binds to C. jejuni flagella displaying the nine-carbon monosaccharide 7-acetamidino-pseudaminic acid, and that this binding partially inhibits cell growth. However, the mechanism of this growth inhibition, as well as how C. jejuni might resist this activity, are not well-understood. Here we use RNA-Seq to show that FlaGrab exposure leads C. jejuni 11168 cells to downregulate expression of energy metabolism genes, and that FlaGrab-induced growth inhibition is dependent on motile flagella. Our results are consistent with a model whereby FlaGrab binding transmits a signal through flagella that leads to retarded cell growth. To evaluate mechanisms of FlaGrab resistance in C. jejuni, we characterized the flagellar glycans and flagellar glycosylation loci of two C. jejuni strains naturally resistant to FlaGrab binding. Our results point toward flagellar glycan diversity as the mechanism of resistance to FlaGrab. Overall, we have further characterized the interaction between this phage-encoded flagellar glycan-binding protein and C. jejuni, both in terms of mechanism of action and mechanism of resistance. Our results suggest that C. jejuni encodes as-yet unidentified mechanisms for generating flagellar glycan diversity, and point to phage proteins as exciting lenses through which to study bacterial surface glycans. |
format | Online Article Text |
id | pubmed-7099621 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70996212020-04-07 Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans Sacher, Jessica C. Shajahan, Asif Butcher, James Patry, Robert T. Flint, Annika Hendrixson, David R. Stintzi, Alain Azadi, Parastoo Szymanski, Christine M. Front Microbiol Microbiology Many bacterial pathogens display glycosylated surface structures that contribute to virulence, and targeting these structures is a viable strategy for pathogen control. The foodborne pathogen Campylobacter jejuni expresses a vast diversity of flagellar glycans, and flagellar glycosylation is essential for its virulence. Little is known about why C. jejuni encodes such a diverse set of flagellar glycans, but it has been hypothesized that evolutionary pressure from bacteriophages (phages) may have contributed to this diversity. However, interactions between Campylobacter phages and host flagellar glycans have not been characterized in detail. Previously, we observed that Gp047 (now renamed FlaGrab), a conserved Campylobacter phage protein, binds to C. jejuni flagella displaying the nine-carbon monosaccharide 7-acetamidino-pseudaminic acid, and that this binding partially inhibits cell growth. However, the mechanism of this growth inhibition, as well as how C. jejuni might resist this activity, are not well-understood. Here we use RNA-Seq to show that FlaGrab exposure leads C. jejuni 11168 cells to downregulate expression of energy metabolism genes, and that FlaGrab-induced growth inhibition is dependent on motile flagella. Our results are consistent with a model whereby FlaGrab binding transmits a signal through flagella that leads to retarded cell growth. To evaluate mechanisms of FlaGrab resistance in C. jejuni, we characterized the flagellar glycans and flagellar glycosylation loci of two C. jejuni strains naturally resistant to FlaGrab binding. Our results point toward flagellar glycan diversity as the mechanism of resistance to FlaGrab. Overall, we have further characterized the interaction between this phage-encoded flagellar glycan-binding protein and C. jejuni, both in terms of mechanism of action and mechanism of resistance. Our results suggest that C. jejuni encodes as-yet unidentified mechanisms for generating flagellar glycan diversity, and point to phage proteins as exciting lenses through which to study bacterial surface glycans. Frontiers Media S.A. 2020-03-20 /pmc/articles/PMC7099621/ /pubmed/32265863 http://dx.doi.org/10.3389/fmicb.2020.00397 Text en Copyright © 2020 Sacher, Shajahan, Butcher, Patry, Flint, Hendrixson, Stintzi, Azadi and Szymanski. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Sacher, Jessica C. Shajahan, Asif Butcher, James Patry, Robert T. Flint, Annika Hendrixson, David R. Stintzi, Alain Azadi, Parastoo Szymanski, Christine M. Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans |
title | Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans |
title_full | Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans |
title_fullStr | Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans |
title_full_unstemmed | Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans |
title_short | Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans |
title_sort | binding of phage-encoded flagrab to motile campylobacter jejuni flagella inhibits growth, downregulates energy metabolism, and requires specific flagellar glycans |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099621/ https://www.ncbi.nlm.nih.gov/pubmed/32265863 http://dx.doi.org/10.3389/fmicb.2020.00397 |
work_keys_str_mv | AT sacherjessicac bindingofphageencodedflagrabtomotilecampylobacterjejuniflagellainhibitsgrowthdownregulatesenergymetabolismandrequiresspecificflagellarglycans AT shajahanasif bindingofphageencodedflagrabtomotilecampylobacterjejuniflagellainhibitsgrowthdownregulatesenergymetabolismandrequiresspecificflagellarglycans AT butcherjames bindingofphageencodedflagrabtomotilecampylobacterjejuniflagellainhibitsgrowthdownregulatesenergymetabolismandrequiresspecificflagellarglycans AT patryrobertt bindingofphageencodedflagrabtomotilecampylobacterjejuniflagellainhibitsgrowthdownregulatesenergymetabolismandrequiresspecificflagellarglycans AT flintannika bindingofphageencodedflagrabtomotilecampylobacterjejuniflagellainhibitsgrowthdownregulatesenergymetabolismandrequiresspecificflagellarglycans AT hendrixsondavidr bindingofphageencodedflagrabtomotilecampylobacterjejuniflagellainhibitsgrowthdownregulatesenergymetabolismandrequiresspecificflagellarglycans AT stintzialain bindingofphageencodedflagrabtomotilecampylobacterjejuniflagellainhibitsgrowthdownregulatesenergymetabolismandrequiresspecificflagellarglycans AT azadiparastoo bindingofphageencodedflagrabtomotilecampylobacterjejuniflagellainhibitsgrowthdownregulatesenergymetabolismandrequiresspecificflagellarglycans AT szymanskichristinem bindingofphageencodedflagrabtomotilecampylobacterjejuniflagellainhibitsgrowthdownregulatesenergymetabolismandrequiresspecificflagellarglycans |