Cargando…

Tanshinone IIA alleviates hypoxia/reoxygenation induced cardiomyocyte injury via lncRNA AK003290/miR-124-5p signaling

BACKGROUND: Acute myocardial infarction (AMI) is the leading cause of death globally and has thus placed a heavy burden on healthcare. Tanshinone IIA (TSA) is a major active compound, extracted from Salvia miltiorrhiza Bunge, that possesses various pharmacological activities. The aim of the present...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Liye, Wei, Lili, Yu, Qiongyang, Shi, Haozhe, Liu, George
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099794/
https://www.ncbi.nlm.nih.gov/pubmed/32220226
http://dx.doi.org/10.1186/s12860-020-00264-3
Descripción
Sumario:BACKGROUND: Acute myocardial infarction (AMI) is the leading cause of death globally and has thus placed a heavy burden on healthcare. Tanshinone IIA (TSA) is a major active compound, extracted from Salvia miltiorrhiza Bunge, that possesses various pharmacological activities. The aim of the present study was to investigate the role of TSA in AMI and its underlying mechanism of action. Results: We have shown that TSA decreased the apoptosis rate, the amount of LDH, MDA as well as ROS of cardiomyocytes. Meantime, it elevated mitochondrial membrane potential (MMP) which was decreased by H/R treatment. It was also determined that miR-124-5p targets AK003290 directly. TSA up-regulated the expression of AK003290 and its function can be reversed by knock down of AK003290 as well as miR-124-5p overexpression. CONCLUSION: TSA exerts the protective role against H/R induced apoptosis, oxidative and MMP loss of cardiomyocytes via regulating AK003290 and miR-124-5p signaling.