Cargando…
Exploiting sequence labeling framework to extract document-level relations from biomedical texts
BACKGROUND: Both intra- and inter-sentential semantic relations in biomedical texts provide valuable information for biomedical research. However, most existing methods either focus on extracting intra-sentential relations and ignore inter-sentential ones or fail to extract inter-sentential relation...
Autores principales: | Li, Zhiheng, Yang, Zhihao, Xiang, Yang, Luo, Ling, Sun, Yuanyuan, Lin, Hongfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099809/ https://www.ncbi.nlm.nih.gov/pubmed/32216746 http://dx.doi.org/10.1186/s12859-020-3457-2 |
Ejemplares similares
-
Enhancing Biomedical Text Summarization Using Semantic Relation Extraction
por: Shang, Yue, et al.
Publicado: (2011) -
Incorporating representation learning and multihead attention to improve biomedical cross-sentence n-ary relation extraction
por: Zhao, Di, et al.
Publicado: (2020) -
Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text
por: Li, Zhiheng, et al.
Publicado: (2019) -
Document-Level Biomedical Relation Extraction Using Graph Convolutional Network and Multihead Attention: Algorithm Development and Validation
por: Wang, Jian, et al.
Publicado: (2020) -
Biomedical document triage using a hierarchical attention-based capsule network
por: Wang, Jian, et al.
Publicado: (2020)