Cargando…

A novel splice site indel alteration in the EIF2AK3 gene is responsible for the first cases of Wolcott-Rallison syndrome in Hungary

BACKGROUND: Wolcott-Rallison Syndrome (WRS) is a rare autosomal recessive disease that is the most common cause of neonatal diabetes in consanguineous families. WRS is caused by various genetic alterations of the Eukaryotic Translation Initiation Factor 2-Alpha Kinase 3 (EIF2AK3) gene. METHODS: Gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Sümegi, Andrea, Hendrik, Zoltán, Gáll, Tamás, Felszeghy, Enikő, Szakszon, Katalin, Antal-Szalmás, Péter, Beke, Lívia, Papp, Ágnes, Méhes, Gábor, Balla, József, Balla, György
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099831/
https://www.ncbi.nlm.nih.gov/pubmed/32216767
http://dx.doi.org/10.1186/s12881-020-0985-6
Descripción
Sumario:BACKGROUND: Wolcott-Rallison Syndrome (WRS) is a rare autosomal recessive disease that is the most common cause of neonatal diabetes in consanguineous families. WRS is caused by various genetic alterations of the Eukaryotic Translation Initiation Factor 2-Alpha Kinase 3 (EIF2AK3) gene. METHODS: Genetic analysis of a consanguineous family where two children were diagnosed with WRS was performed by Sanger sequencing. The altered protein was investigated by in vitro cloning, expression and immunohistochemistry. RESULTS: The first cases in Hungary, − two patients in one family, where the parents were fourth-degree cousins - showed the typical clinical features of WRS: early onset diabetes mellitus with hyperglycemia, growth retardation, infection-induced multiple organ failure. The genetic background of the disease was a novel alteration in the EIF2AK3 gene involving the splice site of exon 11– intron 11–12 boundary: g.53051_53062delinsTG. According to cDNA sequencing this created a new splice site and resulted in a frameshift and the development of an early termination codon at amino acid position 633 (p.Pro627AspfsTer7). Based on in vitro cloning and expression studies, the truncated protein was functionally inactive. Immunohistochemistry revealed that the intact protein was absent in the islets of pancreas, furthermore insulin expressing cells were also dramatically diminished. Elevated GRP78 and reduced CHOP protein expression were observed in the liver. CONCLUSIONS: The novel genetic alteration causing the absence of the EIF2AK3 protein resulted in insufficient handling of severe endoplasmic reticulum stress, leading to liver failure and demise of the patients.