Cargando…

Evolving Gene Targets and Technology in Influenza Detection

Influenza viruses cause recurring epidemic outbreaks every year associated with high morbidity and mortality. Despite extensive research and surveillance efforts to control influenza outbreaks, the primary mitigation treatment for influenza is the development of yearly vaccine mixes targeted for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Malanoski, Anthony P., Lin, Baochuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100497/
https://www.ncbi.nlm.nih.gov/pubmed/23686537
http://dx.doi.org/10.1007/s40291-013-0040-9
Descripción
Sumario:Influenza viruses cause recurring epidemic outbreaks every year associated with high morbidity and mortality. Despite extensive research and surveillance efforts to control influenza outbreaks, the primary mitigation treatment for influenza is the development of yearly vaccine mixes targeted for the most prevalent virus strains. Consequently, the focus of many detection technologies has evolved toward accurate identification of subtype and understanding the evolution and molecular determinants of novel and pathogenic forms of influenza. The recent availability of potential antiviral treatments are only effective if rapid and accurate diagnostic tests for influenza epidemic management are available; thus, early detection of influenza infection is still important for prevention, containment, patient management, and infection control. This review discusses the current and emerging technologies for detection and strain identification of influenza virus and their specific gene targets, as well as their implications in patient management.