Cargando…
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, an...
Autores principales: | Estienne, Théo, Lerousseau, Marvin, Vakalopoulou, Maria, Alvarez Andres, Emilie, Battistella, Enzo, Carré, Alexandre, Chandra, Siddhartha, Christodoulidis, Stergios, Sahasrabudhe, Mihir, Sun, Roger, Robert, Charlotte, Talbot, Hugues, Paragios, Nikos, Deutsch, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100603/ https://www.ncbi.nlm.nih.gov/pubmed/32265680 http://dx.doi.org/10.3389/fncom.2020.00017 |
Ejemplares similares
-
Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics
por: Carré, Alexandre, et al.
Publicado: (2020) -
Investigation of radiomics based intra-patient inter-tumor heterogeneity and the impact of tumor subsampling strategies
por: Henry, T., et al.
Publicado: (2022) -
Radiomics to predict outcomes and abscopal response of patients with cancer treated with immunotherapy combined with radiotherapy using a validated signature of CD8 cells
por: Sun, Roger, et al.
Publicado: (2020) -
AutoComBat: a generic method for harmonizing MRI-based radiomic features
por: Carré, Alexandre, et al.
Publicado: (2022) -
AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia
por: Chassagnon, Guillaume, et al.
Publicado: (2021)