Cargando…
Analyzing and learning the language for different types of harassment
THIS ARTICLE USES WORDS OR LANGUAGE THAT IS CONSIDERED PROFANE, VULGAR, OR OFFENSIVE BY SOME READERS. The presence of a significant amount of harassment in user-generated content and its negative impact calls for robust automatic detection approaches. This requires the identification of different ty...
Autores principales: | Rezvan, Mohammadreza, Shekarpour, Saeedeh, Alshargi, Faisal, Thirunarayan, Krishnaprasad, Shalin, Valerie L., Sheth, Amit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100939/ https://www.ncbi.nlm.nih.gov/pubmed/32218569 http://dx.doi.org/10.1371/journal.pone.0227330 |
Ejemplares similares
-
Correction: Analyzing and learning the language for different types of harassment
Publicado: (2020) -
Knowledge-Infused Abstractive Summarization of Clinical Diagnostic Interviews: Framework Development Study
por: Manas, Gaur, et al.
Publicado: (2021) -
“How Is My Child’s Asthma?” Digital Phenotype and Actionable Insights for Pediatric Asthma
por: Jaimini, Utkarshani, et al.
Publicado: (2018) -
“When they say weed causes depression, but it’s your fav antidepressant”: Knowledge-aware attention framework for relationship extraction
por: Yadav, Shweta, et al.
Publicado: (2021) -
“When ‘Bad’ is ‘Good’”: Identifying Personal Communication and Sentiment in Drug-Related Tweets
por: Daniulaityte, Raminta, et al.
Publicado: (2016)