Cargando…
Genomic Insight into the Spread of Meropenem-Resistant Streptococcus pneumoniae Spain(23F)-ST81, Taiwan
Incidence of invasive pneumococcal disease caused by antimicrobial-resistant Streptococcus pneumoniae types not included in pneumococcal conjugate vaccines has increased, including a penicillin- and meropenem-resistant serotype 15A-ST63 clone in Japan. During 2013–2017, we collected 206 invasive pne...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101100/ https://www.ncbi.nlm.nih.gov/pubmed/32186492 http://dx.doi.org/10.3201/eid2604.190717 |
Sumario: | Incidence of invasive pneumococcal disease caused by antimicrobial-resistant Streptococcus pneumoniae types not included in pneumococcal conjugate vaccines has increased, including a penicillin- and meropenem-resistant serotype 15A-ST63 clone in Japan. During 2013–2017, we collected 206 invasive pneumococcal isolates in Taiwan for penicillin and meropenem susceptibility testing. We found serotypes 15B/C-ST83 and 15A-ST63 were the most prevalent penicillin- and meropenem-resistant clones. A transformation study confirmed that penicillin-binding protein (PBP) 2b was the primary meropenem resistance determinant, and PBP1a was essential for high-level resistance. The rate of serotype 15B/C-ST83 increased during the study. All 15B/C-ST83 isolates showed an ermB macrolide resistance genotype. Prediction analysis of recombination sites revealed 12 recombination regions in 15B/C-ST83 compared with the S. pneumoniae Spain(23F)-ST81 genome. Pneumococcal clones rapidly recombine to acquire survival advantages and undergo local expansion under the selective pressure exerted by vaccines and antimicrobial drugs. The spread of 15B/C-ST83 is alarming for countries with high antimicrobial pressure. |
---|