Cargando…
A novel physical mechanism of liquid flow slippage on a solid surface
Viscous liquids often exhibit flow slippage on solid walls. The occurrence of flow slippage has a large impact on the liquid transport and the resulting energy dissipation, which are crucial for many applications. It is natural to expect that slippage takes place to reduce the dissipation. However,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101223/ https://www.ncbi.nlm.nih.gov/pubmed/32258405 http://dx.doi.org/10.1126/sciadv.aaz0504 |
_version_ | 1783511574926852096 |
---|---|
author | Kurotani, Yuji Tanaka, Hajime |
author_facet | Kurotani, Yuji Tanaka, Hajime |
author_sort | Kurotani, Yuji |
collection | PubMed |
description | Viscous liquids often exhibit flow slippage on solid walls. The occurrence of flow slippage has a large impact on the liquid transport and the resulting energy dissipation, which are crucial for many applications. It is natural to expect that slippage takes place to reduce the dissipation. However, (i) how the density fluctuation is affected by the presence of the wall and (ii) how slippage takes place through forming a gas layer remained elusive. Here, we report possible answers to these fundamental questions: (i) Density fluctuation is intrinsically enhanced near the wall even in a quiescent state irrespective of the property of wall, and (ii) it is the density dependence of the viscosity that destabilizes the system toward gas-layer formation under shear flow. Our scenario of shear-induced gas-phase formation provides a natural physical explanation for wall slippage of liquid flow, covering the slip length ranging from a microscopic (nanometers) to macroscopic (micrometers) scale. |
format | Online Article Text |
id | pubmed-7101223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71012232020-04-03 A novel physical mechanism of liquid flow slippage on a solid surface Kurotani, Yuji Tanaka, Hajime Sci Adv Research Articles Viscous liquids often exhibit flow slippage on solid walls. The occurrence of flow slippage has a large impact on the liquid transport and the resulting energy dissipation, which are crucial for many applications. It is natural to expect that slippage takes place to reduce the dissipation. However, (i) how the density fluctuation is affected by the presence of the wall and (ii) how slippage takes place through forming a gas layer remained elusive. Here, we report possible answers to these fundamental questions: (i) Density fluctuation is intrinsically enhanced near the wall even in a quiescent state irrespective of the property of wall, and (ii) it is the density dependence of the viscosity that destabilizes the system toward gas-layer formation under shear flow. Our scenario of shear-induced gas-phase formation provides a natural physical explanation for wall slippage of liquid flow, covering the slip length ranging from a microscopic (nanometers) to macroscopic (micrometers) scale. American Association for the Advancement of Science 2020-03-27 /pmc/articles/PMC7101223/ /pubmed/32258405 http://dx.doi.org/10.1126/sciadv.aaz0504 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Kurotani, Yuji Tanaka, Hajime A novel physical mechanism of liquid flow slippage on a solid surface |
title | A novel physical mechanism of liquid flow slippage on a solid surface |
title_full | A novel physical mechanism of liquid flow slippage on a solid surface |
title_fullStr | A novel physical mechanism of liquid flow slippage on a solid surface |
title_full_unstemmed | A novel physical mechanism of liquid flow slippage on a solid surface |
title_short | A novel physical mechanism of liquid flow slippage on a solid surface |
title_sort | novel physical mechanism of liquid flow slippage on a solid surface |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101223/ https://www.ncbi.nlm.nih.gov/pubmed/32258405 http://dx.doi.org/10.1126/sciadv.aaz0504 |
work_keys_str_mv | AT kurotaniyuji anovelphysicalmechanismofliquidflowslippageonasolidsurface AT tanakahajime anovelphysicalmechanismofliquidflowslippageonasolidsurface AT kurotaniyuji novelphysicalmechanismofliquidflowslippageonasolidsurface AT tanakahajime novelphysicalmechanismofliquidflowslippageonasolidsurface |