Cargando…
Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial
Classical wave systems have constituted an excellent platform for emulating complex quantum phenomena, such as demonstrating topological phenomena in photonics and acoustics. Recently, a new class of topological states localized in more than one dimension of a D-dimensional system, referred to as hi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101231/ https://www.ncbi.nlm.nih.gov/pubmed/32258398 http://dx.doi.org/10.1126/sciadv.aay4166 |
Sumario: | Classical wave systems have constituted an excellent platform for emulating complex quantum phenomena, such as demonstrating topological phenomena in photonics and acoustics. Recently, a new class of topological states localized in more than one dimension of a D-dimensional system, referred to as higher-order topological (HOT) states, has been reported, offering an even more versatile platform to confine and control classical radiation and mechanical motion. Here, we design and experimentally study a 3D topological acoustic metamaterial supporting third-order (0D) topological corner states along with second-order (1D) edge states and first-order (2D) surface states within the same topological bandgap, thus establishing a full hierarchy of nontrivial bulk polarization–induced states in three dimensions. The assembled 3D topological metamaterial represents the acoustic analog of a pyrochlore lattice made of interconnected molecules, and is shown to exhibit topological bulk polarization, leading to the emergence of boundary states. |
---|