Cargando…
Robustness in spatially driven bistability in signaling systems
Biological systems are spatially organized. This microscopic heterogeneity has been shown to produce emergent complex behaviors such as bistability. Even though the connection between spatiality and dynamic response is essential to understand biological output, its robustness and extent has not been...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101377/ https://www.ncbi.nlm.nih.gov/pubmed/32221383 http://dx.doi.org/10.1038/s41598-020-62412-1 |
_version_ | 1783511608793759744 |
---|---|
author | Tenenbaum, Debora Marrone, Juan Ignacio Grecco, Hernán E. Ventura, Alejandra C. |
author_facet | Tenenbaum, Debora Marrone, Juan Ignacio Grecco, Hernán E. Ventura, Alejandra C. |
author_sort | Tenenbaum, Debora |
collection | PubMed |
description | Biological systems are spatially organized. This microscopic heterogeneity has been shown to produce emergent complex behaviors such as bistability. Even though the connection between spatiality and dynamic response is essential to understand biological output, its robustness and extent has not been sufficiently explored. This work focuses on a previously described system which is composed of two monostable modules acting on different cellular compartments and sharing species through linear shuttling reactions. One of the two main purposes of this paper is to quantify the frequency of occurrence of bistability throughout the parameter space and to identify which parameters and in which value ranges control the emergence and the properties of bistability. We found that a very small fraction of the sampled parameter space produced a bistable response. Most importantly, shuttling parameters were among the most influential ones to control this property. The other goal of this paper is to simplify the same system as much as possible without losing compartment-induced bistability. This procedure provided a simplified model that still connects two monostable systems by a reduced set of linear shuttling reactions that circulates all the species around the two compartments. Bistable systems are one of the main building blocks of more complex behaviors such as oscillations, memory, and digitalization. Therefore, we expect that the proposed minimal system provides insight into how these behaviors can arise from compartmentalization. |
format | Online Article Text |
id | pubmed-7101377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-71013772020-03-31 Robustness in spatially driven bistability in signaling systems Tenenbaum, Debora Marrone, Juan Ignacio Grecco, Hernán E. Ventura, Alejandra C. Sci Rep Article Biological systems are spatially organized. This microscopic heterogeneity has been shown to produce emergent complex behaviors such as bistability. Even though the connection between spatiality and dynamic response is essential to understand biological output, its robustness and extent has not been sufficiently explored. This work focuses on a previously described system which is composed of two monostable modules acting on different cellular compartments and sharing species through linear shuttling reactions. One of the two main purposes of this paper is to quantify the frequency of occurrence of bistability throughout the parameter space and to identify which parameters and in which value ranges control the emergence and the properties of bistability. We found that a very small fraction of the sampled parameter space produced a bistable response. Most importantly, shuttling parameters were among the most influential ones to control this property. The other goal of this paper is to simplify the same system as much as possible without losing compartment-induced bistability. This procedure provided a simplified model that still connects two monostable systems by a reduced set of linear shuttling reactions that circulates all the species around the two compartments. Bistable systems are one of the main building blocks of more complex behaviors such as oscillations, memory, and digitalization. Therefore, we expect that the proposed minimal system provides insight into how these behaviors can arise from compartmentalization. Nature Publishing Group UK 2020-03-27 /pmc/articles/PMC7101377/ /pubmed/32221383 http://dx.doi.org/10.1038/s41598-020-62412-1 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Tenenbaum, Debora Marrone, Juan Ignacio Grecco, Hernán E. Ventura, Alejandra C. Robustness in spatially driven bistability in signaling systems |
title | Robustness in spatially driven bistability in signaling systems |
title_full | Robustness in spatially driven bistability in signaling systems |
title_fullStr | Robustness in spatially driven bistability in signaling systems |
title_full_unstemmed | Robustness in spatially driven bistability in signaling systems |
title_short | Robustness in spatially driven bistability in signaling systems |
title_sort | robustness in spatially driven bistability in signaling systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101377/ https://www.ncbi.nlm.nih.gov/pubmed/32221383 http://dx.doi.org/10.1038/s41598-020-62412-1 |
work_keys_str_mv | AT tenenbaumdebora robustnessinspatiallydrivenbistabilityinsignalingsystems AT marronejuanignacio robustnessinspatiallydrivenbistabilityinsignalingsystems AT greccohernane robustnessinspatiallydrivenbistabilityinsignalingsystems AT venturaalejandrac robustnessinspatiallydrivenbistabilityinsignalingsystems |