Cargando…

Integrative omics of Lonicera japonica Thunb. Flower development unravels molecular changes regulating secondary metabolites

Lonicera japonica Thunb. is an important medicinal plant. The secondary metabolites in L. japonica are diverse and vary in levels during development, leading to the ambiguous evaluation for its medical value. In order to reveal the regulatory mechanism of secondary metabolites during the flowering s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Bingxian, Zhong, Zhuoheng, Wang, Tantan, Ou, Yuting, Tian, Jingkui, Komatsu, Setsuko, Zhang, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102679/
https://www.ncbi.nlm.nih.gov/pubmed/31374363
http://dx.doi.org/10.1016/j.jprot.2019.103470
Descripción
Sumario:Lonicera japonica Thunb. is an important medicinal plant. The secondary metabolites in L. japonica are diverse and vary in levels during development, leading to the ambiguous evaluation for its medical value. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Further proteomic analysis revealed that uniquely identified proteins were mainly involved in glycolysis/phenylpropanoids and tricarboxylic acid cycle/terpenoid backbone pathways in early and late stages, respectively. Transketolase was commonly identified in the 5 developmental stages and 2-fold increase in gold flowering stage compared with juvenile bud stage. Simple phenylpropanoids/flavonoids and 1-deoxy-D-xylulose-5-phosphate were accumulated in early stages and upregulated in late stages, respectively. These results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development. BIOLOGICAL SIGNIFICANCE: Lonicera japonica Thunb. is a native species in the East Asian and used in traditional Chinese medicine. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Our results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development.