Cargando…

The biochemical and metabolic profiles of dairy cows with mycotoxins-contaminated diets

BACKGROUND: Previous studies on the effects of mycotoxins have solely focused on their biochemical profiles or products in dairy ruminants. Changes in metabolism that occur after exposure to mycotoxins, as well as biochemical changes, have not been explored. METHODS: We measured the biochemical and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qian, Zhang, Yangdong, Zheng, Nan, Zhao, Shengguo, Li, Songli, Wang, Jiaqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103205/
https://www.ncbi.nlm.nih.gov/pubmed/32257637
http://dx.doi.org/10.7717/peerj.8742
Descripción
Sumario:BACKGROUND: Previous studies on the effects of mycotoxins have solely focused on their biochemical profiles or products in dairy ruminants. Changes in metabolism that occur after exposure to mycotoxins, as well as biochemical changes, have not been explored. METHODS: We measured the biochemical and metabolic changes in dairy cows after exposure to mycotoxins using biochemical analyses and nuclear magnetic resonance. Twenty-four dairy cows were randomly assigned to three different treatment groups. Control cows received diets with 2 kg uncontaminated cottonseed. Cows in the 50% replacement group received the same diet as the control group, but with 1 kg of uncontaminated cottonseed and 1 kg of cottonseed contaminated with mycotoxins. Cows in the 100% replacement group received the same diet as the control, but with 2 kg contaminated cottonseed. RESULTS: The results showed that serum γ-glutamyl transpeptidase and total antioxidant capacities were significantly affected by cottonseed contaminated with mycotoxins. There were also significant differences in isovalerate and NH(3)-N levels, and significant differences in the eight plasma metabolites among the three groups. These metabolites are mainly involved in amino acid metabolism pathways. Therefore, the results suggest that amino acid metabolism pathways may be affected by mycotoxins exposure.