Cargando…
The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration
Although relatively rare, major trauma to the tracheal region of the airways poses a significant clinical challenge with few effective treatments. Bioengineering and regenerative medicine strategies have the potential to create biocompatible, implantable biomaterial scaffolds, with the capacity to r...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103641/ https://www.ncbi.nlm.nih.gov/pubmed/32266229 http://dx.doi.org/10.3389/fbioe.2020.00190 |
_version_ | 1783512091232043008 |
---|---|
author | O'Leary, Cian Soriano, Luis Fagan-Murphy, Aidan Ivankovic, Ivana Cavanagh, Brenton O'Brien, Fergal J. Cryan, Sally-Ann |
author_facet | O'Leary, Cian Soriano, Luis Fagan-Murphy, Aidan Ivankovic, Ivana Cavanagh, Brenton O'Brien, Fergal J. Cryan, Sally-Ann |
author_sort | O'Leary, Cian |
collection | PubMed |
description | Although relatively rare, major trauma to the tracheal region of the airways poses a significant clinical challenge with few effective treatments. Bioengineering and regenerative medicine strategies have the potential to create biocompatible, implantable biomaterial scaffolds, with the capacity to restore lost tissue with functional neo-trachea. The main goal of this study was to develop a nanofibrous polycaprolactone-chitosan (PCL-Chitosan) scaffold loaded with a signaling molecule, all-trans retinoic acid (atRA), as a novel biomaterial approach for tracheal tissue engineering. Using the Spraybase® electrospinning platform, polymer concentration, solvent selection, and instrument parameters were optimized to yield a co-polymer with nanofibers of 181–197 nm in diameter that mimicked tracheobronchial tissue architecture. Thereafter, scaffolds were assessed for their biocompatibility and capacity to induce mucociliary functionalization using the Calu-3 cell line. PCL-Chitosan scaffolds were found to be biocompatible in nature and support Calu-3 cell viability over a 14 day time period. Additionally, the inclusion of atRA did not compromise Calu-3 cell viability, while still achieving an efficient encapsulation of the signaling molecule over a range of atRA concentrations. atRA release from scaffolds led to an increase in mucociliary gene expression at high scaffold loading doses, with augmented MUC5AC and FOXJ1 detected by RT-PCR. Overall, this scaffold integrates a synthetic polymer that has been used in human tracheal stents, a natural polymer generally regarded as safe (GRAS), and a drug with decades of use in patients. Coupled with the scalable nature of electrospinning as a fabrication method, all of these characteristics make the biomaterial outlined in this study amenable as an implantable device for an unmet clinical need in tracheal replacement. |
format | Online Article Text |
id | pubmed-7103641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71036412020-04-07 The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration O'Leary, Cian Soriano, Luis Fagan-Murphy, Aidan Ivankovic, Ivana Cavanagh, Brenton O'Brien, Fergal J. Cryan, Sally-Ann Front Bioeng Biotechnol Bioengineering and Biotechnology Although relatively rare, major trauma to the tracheal region of the airways poses a significant clinical challenge with few effective treatments. Bioengineering and regenerative medicine strategies have the potential to create biocompatible, implantable biomaterial scaffolds, with the capacity to restore lost tissue with functional neo-trachea. The main goal of this study was to develop a nanofibrous polycaprolactone-chitosan (PCL-Chitosan) scaffold loaded with a signaling molecule, all-trans retinoic acid (atRA), as a novel biomaterial approach for tracheal tissue engineering. Using the Spraybase® electrospinning platform, polymer concentration, solvent selection, and instrument parameters were optimized to yield a co-polymer with nanofibers of 181–197 nm in diameter that mimicked tracheobronchial tissue architecture. Thereafter, scaffolds were assessed for their biocompatibility and capacity to induce mucociliary functionalization using the Calu-3 cell line. PCL-Chitosan scaffolds were found to be biocompatible in nature and support Calu-3 cell viability over a 14 day time period. Additionally, the inclusion of atRA did not compromise Calu-3 cell viability, while still achieving an efficient encapsulation of the signaling molecule over a range of atRA concentrations. atRA release from scaffolds led to an increase in mucociliary gene expression at high scaffold loading doses, with augmented MUC5AC and FOXJ1 detected by RT-PCR. Overall, this scaffold integrates a synthetic polymer that has been used in human tracheal stents, a natural polymer generally regarded as safe (GRAS), and a drug with decades of use in patients. Coupled with the scalable nature of electrospinning as a fabrication method, all of these characteristics make the biomaterial outlined in this study amenable as an implantable device for an unmet clinical need in tracheal replacement. Frontiers Media S.A. 2020-03-20 /pmc/articles/PMC7103641/ /pubmed/32266229 http://dx.doi.org/10.3389/fbioe.2020.00190 Text en Copyright © 2020 O'Leary, Soriano, Fagan-Murphy, Ivankovic, Cavanagh, O'Brien and Cryan. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology O'Leary, Cian Soriano, Luis Fagan-Murphy, Aidan Ivankovic, Ivana Cavanagh, Brenton O'Brien, Fergal J. Cryan, Sally-Ann The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration |
title | The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration |
title_full | The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration |
title_fullStr | The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration |
title_full_unstemmed | The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration |
title_short | The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration |
title_sort | fabrication and in vitro evaluation of retinoic acid-loaded electrospun composite biomaterials for tracheal tissue regeneration |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103641/ https://www.ncbi.nlm.nih.gov/pubmed/32266229 http://dx.doi.org/10.3389/fbioe.2020.00190 |
work_keys_str_mv | AT olearycian thefabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT sorianoluis thefabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT faganmurphyaidan thefabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT ivankovicivana thefabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT cavanaghbrenton thefabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT obrienfergalj thefabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT cryansallyann thefabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT olearycian fabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT sorianoluis fabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT faganmurphyaidan fabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT ivankovicivana fabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT cavanaghbrenton fabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT obrienfergalj fabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration AT cryansallyann fabricationandinvitroevaluationofretinoicacidloadedelectrospuncompositebiomaterialsfortrachealtissueregeneration |