Cargando…

An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI

High-resolution volume reconstruction from multiple motion-corrupted stacks of 2D slices plays an increasing role for fetal brain Magnetic Resonance Imaging (MRI) studies. Currently existing reconstruction methods are time-consuming and often require user interactions to localize and extract the bra...

Descripción completa

Detalles Bibliográficos
Autores principales: Ebner, Michael, Wang, Guotai, Li, Wenqi, Aertsen, Michael, Patel, Premal A., Aughwane, Rosalind, Melbourne, Andrew, Doel, Tom, Dymarkowski, Steven, De Coppi, Paolo, David, Anna L., Deprest, Jan, Ourselin, Sébastien, Vercauteren, Tom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103783/
https://www.ncbi.nlm.nih.gov/pubmed/31704293
http://dx.doi.org/10.1016/j.neuroimage.2019.116324
_version_ 1783512111901573120
author Ebner, Michael
Wang, Guotai
Li, Wenqi
Aertsen, Michael
Patel, Premal A.
Aughwane, Rosalind
Melbourne, Andrew
Doel, Tom
Dymarkowski, Steven
De Coppi, Paolo
David, Anna L.
Deprest, Jan
Ourselin, Sébastien
Vercauteren, Tom
author_facet Ebner, Michael
Wang, Guotai
Li, Wenqi
Aertsen, Michael
Patel, Premal A.
Aughwane, Rosalind
Melbourne, Andrew
Doel, Tom
Dymarkowski, Steven
De Coppi, Paolo
David, Anna L.
Deprest, Jan
Ourselin, Sébastien
Vercauteren, Tom
author_sort Ebner, Michael
collection PubMed
description High-resolution volume reconstruction from multiple motion-corrupted stacks of 2D slices plays an increasing role for fetal brain Magnetic Resonance Imaging (MRI) studies. Currently existing reconstruction methods are time-consuming and often require user interactions to localize and extract the brain from several stacks of 2D slices. We propose a fully automatic framework for fetal brain reconstruction that consists of four stages: 1) fetal brain localization based on a coarse segmentation by a Convolutional Neural Network (CNN), 2) fine segmentation by another CNN trained with a multi-scale loss function, 3) novel, single-parameter outlier-robust super-resolution reconstruction, and 4) fast and automatic high-resolution visualization in standard anatomical space suitable for pathological brains. We validated our framework with images from fetuses with normal brains and with variable degrees of ventriculomegaly associated with open spina bifida, a congenital malformation affecting also the brain. Experiments show that each step of our proposed pipeline outperforms state-of-the-art methods in both segmentation and reconstruction comparisons including expert-reader quality assessments. The reconstruction results of our proposed method compare favorably with those obtained by manual, labor-intensive brain segmentation, which unlocks the potential use of automatic fetal brain reconstruction studies in clinical practice.
format Online
Article
Text
id pubmed-7103783
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-71037832020-03-31 An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI Ebner, Michael Wang, Guotai Li, Wenqi Aertsen, Michael Patel, Premal A. Aughwane, Rosalind Melbourne, Andrew Doel, Tom Dymarkowski, Steven De Coppi, Paolo David, Anna L. Deprest, Jan Ourselin, Sébastien Vercauteren, Tom Neuroimage Article High-resolution volume reconstruction from multiple motion-corrupted stacks of 2D slices plays an increasing role for fetal brain Magnetic Resonance Imaging (MRI) studies. Currently existing reconstruction methods are time-consuming and often require user interactions to localize and extract the brain from several stacks of 2D slices. We propose a fully automatic framework for fetal brain reconstruction that consists of four stages: 1) fetal brain localization based on a coarse segmentation by a Convolutional Neural Network (CNN), 2) fine segmentation by another CNN trained with a multi-scale loss function, 3) novel, single-parameter outlier-robust super-resolution reconstruction, and 4) fast and automatic high-resolution visualization in standard anatomical space suitable for pathological brains. We validated our framework with images from fetuses with normal brains and with variable degrees of ventriculomegaly associated with open spina bifida, a congenital malformation affecting also the brain. Experiments show that each step of our proposed pipeline outperforms state-of-the-art methods in both segmentation and reconstruction comparisons including expert-reader quality assessments. The reconstruction results of our proposed method compare favorably with those obtained by manual, labor-intensive brain segmentation, which unlocks the potential use of automatic fetal brain reconstruction studies in clinical practice. Academic Press 2020-02-01 /pmc/articles/PMC7103783/ /pubmed/31704293 http://dx.doi.org/10.1016/j.neuroimage.2019.116324 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ebner, Michael
Wang, Guotai
Li, Wenqi
Aertsen, Michael
Patel, Premal A.
Aughwane, Rosalind
Melbourne, Andrew
Doel, Tom
Dymarkowski, Steven
De Coppi, Paolo
David, Anna L.
Deprest, Jan
Ourselin, Sébastien
Vercauteren, Tom
An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
title An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
title_full An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
title_fullStr An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
title_full_unstemmed An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
title_short An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
title_sort automated framework for localization, segmentation and super-resolution reconstruction of fetal brain mri
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103783/
https://www.ncbi.nlm.nih.gov/pubmed/31704293
http://dx.doi.org/10.1016/j.neuroimage.2019.116324
work_keys_str_mv AT ebnermichael anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT wangguotai anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT liwenqi anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT aertsenmichael anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT patelpremala anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT aughwanerosalind anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT melbourneandrew anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT doeltom anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT dymarkowskisteven anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT decoppipaolo anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT davidannal anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT deprestjan anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT ourselinsebastien anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT vercauterentom anautomatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT ebnermichael automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT wangguotai automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT liwenqi automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT aertsenmichael automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT patelpremala automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT aughwanerosalind automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT melbourneandrew automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT doeltom automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT dymarkowskisteven automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT decoppipaolo automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT davidannal automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT deprestjan automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT ourselinsebastien automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri
AT vercauterentom automatedframeworkforlocalizationsegmentationandsuperresolutionreconstructionoffetalbrainmri