Cargando…
An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI
High-resolution volume reconstruction from multiple motion-corrupted stacks of 2D slices plays an increasing role for fetal brain Magnetic Resonance Imaging (MRI) studies. Currently existing reconstruction methods are time-consuming and often require user interactions to localize and extract the bra...
Autores principales: | Ebner, Michael, Wang, Guotai, Li, Wenqi, Aertsen, Michael, Patel, Premal A., Aughwane, Rosalind, Melbourne, Andrew, Doel, Tom, Dymarkowski, Steven, De Coppi, Paolo, David, Anna L., Deprest, Jan, Ourselin, Sébastien, Vercauteren, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103783/ https://www.ncbi.nlm.nih.gov/pubmed/31704293 http://dx.doi.org/10.1016/j.neuroimage.2019.116324 |
Ejemplares similares
-
Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views
por: Wang, Guotai, et al.
Publicado: (2016) -
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
por: Wang, Guotai, et al.
Publicado: (2019) -
Super-resolution Reconstruction MRI Application in Fetal Neck Masses and Congenital High Airway Obstruction Syndrome
por: Mufti, Nada, et al.
Publicado: (2021) -
Separating fetal and maternal placenta circulations using multiparametric MRI
por: Melbourne, Andrew, et al.
Publicado: (2018) -
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation
por: Wang, Guotai, et al.
Publicado: (2019)