Cargando…
Reporting quality of studies using machine learning models for medical diagnosis: a systematic review
AIMS: We conducted a systematic review assessing the reporting quality of studies validating models based on machine learning (ML) for clinical diagnosis, with a specific focus on the reporting of information concerning the participants on which the diagnostic task was evaluated on. METHOD: Medline...
Autores principales: | Yusuf, Mohamed, Atal, Ignacio, Li, Jacques, Smith, Philip, Ravaud, Philippe, Fergie, Martin, Callaghan, Michael, Selfe, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103817/ https://www.ncbi.nlm.nih.gov/pubmed/32205374 http://dx.doi.org/10.1136/bmjopen-2019-034568 |
Ejemplares similares
-
2476: Identifying strangulated small bowel obstruction with machine learning
por: David Zetumer, Samuel, et al.
Publicado: (2018) -
Predicting the risk of cancer in adults using supervised machine learning: a scoping review
por: Abdullah Alfayez, Asma, et al.
Publicado: (2021) -
Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study
por: Farran, Bassam, et al.
Publicado: (2013) -
Predicting asthma attacks in primary care: protocol for developing a machine learning-based prediction model
por: Tibble, Holly, et al.
Publicado: (2019) -
Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol
por: Tsang, Kevin Cheuk Him, et al.
Publicado: (2022)