Cargando…

Demonstration of interferometer enhancement through EPR entanglement

The recent series of gravitational-wave (GW) detections by the Advanced LIGO and Advanced Virgo observatories launched the new field of GW astronomy. As the sensitivity of GW detectors is limited by quantum noise of light, concepts from quantum metrology have been adapted to increase the observation...

Descripción completa

Detalles Bibliográficos
Autores principales: Südbeck, Jan, Steinlechner, Sebastian, Korobko, Mikhail, Schnabel, Roman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104361/
https://www.ncbi.nlm.nih.gov/pubmed/32231708
http://dx.doi.org/10.1038/s41566-019-0583-3
Descripción
Sumario:The recent series of gravitational-wave (GW) detections by the Advanced LIGO and Advanced Virgo observatories launched the new field of GW astronomy. As the sensitivity of GW detectors is limited by quantum noise of light, concepts from quantum metrology have been adapted to increase the observational range. Since 2010, squeezed light with reduced quantum noise has been used for improved sensitivity at signal frequencies above 100 Hz. However, 100 m long optical filter resonators would be required to also improve the sensitivity at lower frequencies, adding significant cost and complexity. Here we report on a proof-of-principle setup of an alternative concept that achieves the broadband noise reduction by using Einstein-Podolsky-Rosen (EPR) entangled states instead. We show that the desired sensitivity improvement can then be obtained with the signal-recycling resonator that is already part of current observatories, providing the viable alternative to high-cost filter cavities.