Cargando…

HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation

The anti-cancer drug target poly(ADP-ribose) polymerase 1 (PARP1) and its close homologue, PARP2, are early responders to DNA damage in human cells(1,2). Upon binding to genomic lesions, these enzymes utilise NAD(+) to modify a plethora of proteins with mono- and poly(ADP-ribose) signals that are im...

Descripción completa

Detalles Bibliográficos
Autores principales: Suskiewicz, Marcin J., Zobel, Florian, Ogden, Tom E. H., Fontana, Pietro, Ariza, Antonio, Yang, Ji-Chun, Zhu, Kang, Bracken, Lily, Hawthorne, William J., Ahel, Dragana, Neuhaus, David, Ahel, Ivan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104379/
https://www.ncbi.nlm.nih.gov/pubmed/32028527
http://dx.doi.org/10.1038/s41586-020-2013-6
Descripción
Sumario:The anti-cancer drug target poly(ADP-ribose) polymerase 1 (PARP1) and its close homologue, PARP2, are early responders to DNA damage in human cells(1,2). Upon binding to genomic lesions, these enzymes utilise NAD(+) to modify a plethora of proteins with mono- and poly(ADP-ribose) signals that are important for subsequent chromatin decompaction and repair factor recruitment(3,4). These post-translational modification events are predominantly serine-linked and require HPF1, an accessory factor that is specific for DNA damage response and switches the amino-acid specificity of PARP1/2 from aspartate/glutamate to serine residues(5–10). Here, we report a co-structure of HPF1 bound to the catalytic domain of PARP2 that, in combination with NMR and biochemical data, reveals a composite active site formed by residues from both PARP1/2 and HPF1. We further show that the assembly of this new catalytic centre is essential for DNA damage-induced protein ADP-ribosylation in human cells. In response to DNA damage and NAD(+) binding site occupancy, the HPF1-PARP1/2 interaction is enhanced via allosteric networks operating within PARP1/2, providing an additional level of regulation in DNA repair induction. As HPF1 forms a joint active site with PARP1/2, our data implicate HPF1 as an important determinant of the response to clinical PARP inhibitors.