Cargando…
Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome
The human epigenome has been experimentally characterized by thousands of measurements for every basepair in the human genome. We propose a deep neural network tensor factorization method, Avocado, that compresses this epigenomic data into a dense, information-rich representation. We use this learne...
Autores principales: | Schreiber, Jacob, Durham, Timothy, Bilmes, Jeffrey, Noble, William Stafford |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104480/ https://www.ncbi.nlm.nih.gov/pubmed/32228704 http://dx.doi.org/10.1186/s13059-020-01977-6 |
Ejemplares similares
-
Author Correction: Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome
por: Schreiber, Jacob, et al.
Publicado: (2021) -
PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor Decomposition
por: Durham, Timothy J., et al.
Publicado: (2018) -
Completing the ENCODE3 compendium yields accurate imputations across a variety of assays and human biosamples
por: Schreiber, Jacob, et al.
Publicado: (2020) -
Prioritizing transcriptomic and epigenomic experiments using an optimization strategy that leverages imputed data
por: Schreiber, Jacob, et al.
Publicado: (2020) -
Epiphany: predicting Hi-C contact maps from 1D epigenomic signals
por: Yang, Rui, et al.
Publicado: (2023)