Cargando…
Predicting Body Mass Index From Structural MRI Brain Images Using a Deep Convolutional Neural Network
In recent years, deep learning (DL) has become more widespread in the fields of cognitive and clinical neuroimaging. Using deep neural network models to process neuroimaging data is an efficient method to classify brain disorders and identify individuals who are at increased risk of age-related cogn...
Autores principales: | Vakli, Pál, Deák-Meszlényi, Regina J., Auer, Tibor, Vidnyánszky, Zoltán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104804/ https://www.ncbi.nlm.nih.gov/pubmed/32265681 http://dx.doi.org/10.3389/fninf.2020.00010 |
Ejemplares similares
-
Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks
por: Vakli, Pál, et al.
Publicado: (2018) -
Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture
por: Meszlényi, Regina J., et al.
Publicado: (2017) -
Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping
por: Meszlényi, Regina J., et al.
Publicado: (2017) -
Movement-related artefacts (MR-ART) dataset of matched motion-corrupted and clean structural MRI brain scans
por: Nárai, Ádám, et al.
Publicado: (2022) -
The influence of anticipated monetary incentives on visual working memory performance in healthy younger and older adults
por: Manga, Annamária, et al.
Publicado: (2020)