Cargando…
The dynamics of pain reappraisal: the joint contribution of cognitive change and mental load
This study was designed to investigate the neural mechanism of cognitive modulation of pain via a reappraisal strategy with high temporal resolution. The EEG signal was recorded from 29 participants who were instructed to down-regulate, up-regulate, or maintain their pain experience. The L2 minimum...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105446/ https://www.ncbi.nlm.nih.gov/pubmed/31950439 http://dx.doi.org/10.3758/s13415-020-00768-7 |
Sumario: | This study was designed to investigate the neural mechanism of cognitive modulation of pain via a reappraisal strategy with high temporal resolution. The EEG signal was recorded from 29 participants who were instructed to down-regulate, up-regulate, or maintain their pain experience. The L2 minimum norm source reconstruction method was used to localize areas in which a significant effect of the instruction was present. Down-regulating pain by reappraisal exerted a robust effect on pain processing from as early as ~100 ms that diminished the activity of limbic brain regions: the anterior cingulate cortex, right orbitofrontal cortex, left anterior temporal region, and left insula. However, compared with the no-regulation condition, the neural activity was similarly attenuated in the up- and down-regulation conditions. We suggest that this effect could be ascribed to the cognitive load that was associated with the execution of a cognitively demanding reappraisal task that could have produced a general attenuation of pain-related areas regardless of the aim of the reappraisal task (i.e., up- or down-regulation attempts). These findings indicate that reappraisal effects reflect the joint influence of both reappraisal-specific (cognitive change) and unspecific (cognitive demand) factors, thus pointing to the importance of cautiously selected control conditions that allow the modulating impact of both processes to be distinguished. |
---|