Cargando…
GAN-based synthetic brain PET image generation
In recent days, deep learning technologies have achieved tremendous success in computer vision-related tasks with the help of large-scale annotated dataset. Obtaining such dataset for medical image analysis is very challenging. Working with the limited dataset and small amount of annotated samples m...
Autores principales: | Islam, Jyoti, Zhang, Yanqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105582/ https://www.ncbi.nlm.nih.gov/pubmed/32232602 http://dx.doi.org/10.1186/s40708-020-00104-2 |
Ejemplares similares
-
SinGAN-Seg: Synthetic training data generation for medical image segmentation
por: Thambawita, Vajira, et al.
Publicado: (2022) -
Synthetic Epileptic Brain Activities with TripleGAN
por: Xu, Meiyan, et al.
Publicado: (2022) -
BrainGAN: Brain MRI Image Generation and Classification Framework Using GAN Architectures and CNN Models
por: Alrashedy, Halima Hamid N., et al.
Publicado: (2022) -
Using RegGAN to generate synthetic CT images from CBCT images acquired with different linear accelerators
por: Li, Zhenkai, et al.
Publicado: (2023) -
Generation of synthetic ground glass nodules using generative adversarial networks (GANs)
por: Wang, Zhixiang, et al.
Publicado: (2022)