Cargando…
PI3K/Akt/p53 pathway inhibits reovirus infection
Viral infections activate many host signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which has recently attracted considerable interest due to its central role in modulating virus replication. This study demonstrated that the sero-type 3 reovirus strain Masked Palm...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106092/ https://www.ncbi.nlm.nih.gov/pubmed/26066464 http://dx.doi.org/10.1016/j.meegid.2015.06.008 |
Sumario: | Viral infections activate many host signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which has recently attracted considerable interest due to its central role in modulating virus replication. This study demonstrated that the sero-type 3 reovirus strain Masked Palm Civet/China/2004 (MPC/04) could transiently activate the PI3K/Akt pathway in A549 cells at earlier time points of infection. The blockage of PI3K/Akt activation increased viral RNA synthesis and yield. The role of the downstream effectors MDM2/p53 of PI3K/Akt in regulating reovirus replication was further analyzed. We found that during reovirus infection, the level of phosphorylated MDM2 (p-MDM2) was increased and the expression of p53 was reduced. In addition, the blockage of PI3K/Akt by Ly294002 or knockdown of Akt by siRNA reduced the level of p-MDM2 and increased the level of p53. Both indicated that the downstream effectors MDM2/p53 of PI3K/Akt were activated. Pre-treatment with Nutlin, which can destroy MDM2 and p53 cross-talk and increase the expression of p53 RNA and protein, dose-dependently enhanced reovirus replication. Additionally, the overexpression of p53 alone also supported reovirus replication, and knockdown of p53 significantly inhibited viral replication. This study demonstrates that PI3K/Akt/p53 activated by mammalian reovirus can serve as a pathway for inhibiting virus replication/infection, yet the precise mechanism of this process remains under further investigation. |
---|