Cargando…

An Improved ATP FRET Sensor For Yeast Shows Heterogeneity During Nutrient Transitions

[Image: see text] Adenosine 5-triphosphate (ATP) is the main free energy carrier in metabolism. In budding yeast, shifts to glucose-rich conditions cause dynamic changes in ATP levels, but it is unclear how heterogeneous these dynamics are at a single-cell level. Furthermore, pH also changes and aff...

Descripción completa

Detalles Bibliográficos
Autores principales: Botman, Dennis, van Heerden, Johan H., Teusink, Bas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106129/
https://www.ncbi.nlm.nih.gov/pubmed/32077276
http://dx.doi.org/10.1021/acssensors.9b02475
Descripción
Sumario:[Image: see text] Adenosine 5-triphosphate (ATP) is the main free energy carrier in metabolism. In budding yeast, shifts to glucose-rich conditions cause dynamic changes in ATP levels, but it is unclear how heterogeneous these dynamics are at a single-cell level. Furthermore, pH also changes and affects readout of fluorescence-based biosensors for single-cell measurements. To measure ATP changes reliably in single yeast cells, we developed yAT1.03, an adapted version of the AT1.03 ATP biosensor, that is pH-insensitive. We show that pregrowth conditions largely affect ATP dynamics during transitions. Moreover, single-cell analyses showed a large variety in ATP responses, which implies large differences of glycolytic startup between individual cells. We found three clusters of dynamic responses, and we show that a small subpopulation of wild-type cells reached an imbalanced state during glycolytic startup, characterized by low ATP levels. These results confirm the need for new tools to study dynamic responses of individual cells in dynamic environments.