Cargando…

Preparation of recombinant vaccines

Vaccination is one of the most efficient ways to eradicate some infectious diseases in humans and animals. The material traditionally used as vaccines is attenuated or inactivated pathogens. This approach is sometimes limited by the fact that the material for vaccination is not efficient, not availa...

Descripción completa

Detalles Bibliográficos
Autores principales: Soler, Eric, Houdebine, Louis-Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106376/
https://www.ncbi.nlm.nih.gov/pubmed/17875474
http://dx.doi.org/10.1016/S1387-2656(07)13004-0
Descripción
Sumario:Vaccination is one of the most efficient ways to eradicate some infectious diseases in humans and animals. The material traditionally used as vaccines is attenuated or inactivated pathogens. This approach is sometimes limited by the fact that the material for vaccination is not efficient, not available, or generating deleterious side effects. A possible theoretical alternative is the use of recombinant proteins from the pathogens. This implies that the proteins having the capacity to vaccinate have been identified and that they can be produced in sufficient quantity at a low cost. Genetically modified organisms harboring pathogen genes can fulfil these conditions. Microorganisms, animal cells as well as transgenic plants and animals can be the source of recombinant vaccines. Each of these systems that are all getting improved has advantages and limits. Adjuvants must generally be added to the recombinant proteins to enhance their vaccinating capacity. This implies that the proteins used to vaccinate have been purified to avoid any immunization against the contaminants. The efficiency of a recombinant vaccine is poorly predictable. Multiple proteins and various modes of administration must therefore be empirically evaluated on a case-by-case basis. The structure of the recombinant proteins, the composition of the adjuvants and the mode of administration of the vaccines have a strong and not fully predictable impact on the immune response as well as the protection level against pathogens. Recombinant proteins can theoretically also be used as carriers for epitopes from other pathogens. The increasing knowledge of pathogen genomes and the availability of efficient systems to prepare large amounts of recombinant proteins greatly facilitate the potential use of recombinant proteins as vaccines. The present review is a critical analysis of the state of the art in this field.