Cargando…
Multiple imputation by predictive mean matching in cluster-randomized trials
BACKGROUND: Random effects regression imputation has been recommended for multiple imputation (MI) in cluster randomized trials (CRTs) because it is congenial to analyses that use random effects regression. This method relies heavily on model assumptions and may not be robust to misspecification of...
Autores principales: | Bailey, Brittney E., Andridge, Rebecca, Shoben, Abigail B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106802/ https://www.ncbi.nlm.nih.gov/pubmed/32228491 http://dx.doi.org/10.1186/s12874-020-00948-6 |
Ejemplares similares
-
Tuning multiple imputation by predictive mean matching and local residual draws
por: Morris, Tim P, et al.
Publicado: (2014) -
Logistic regression vs. predictive mean matching for imputing binary covariates
por: Austin, Peter C, et al.
Publicado: (2023) -
The use of multiple imputation (MI) in cluster randomised trials with suspected missing not at random (MNAR) outcome
por: Playle, Rebecca, et al.
Publicado: (2015) -
Multiple imputation methods for bivariate outcomes in cluster randomised trials
por: DiazOrdaz, K., et al.
Publicado: (2016) -
Imputation strategies for missing binary outcomes in cluster randomized trials
por: Ma, Jinhui, et al.
Publicado: (2011)