Cargando…
Research of Low-Rank Representation and Discriminant Correlation Analysis for Alzheimer's Disease Diagnosis
As population aging is becoming more common worldwide, applying artificial intelligence into the diagnosis of Alzheimer's disease (AD) is critical to improve the diagnostic level in recent years. In early diagnosis of AD, the fusion of complementary information contained in multimodality data (...
Autores principales: | Li, Zhigang, Dong, Aimei, Zhou, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106873/ https://www.ncbi.nlm.nih.gov/pubmed/32256681 http://dx.doi.org/10.1155/2020/5294840 |
Ejemplares similares
-
High-Order Laplacian Regularized Low-Rank Representation for Multimodal Dementia Diagnosis
por: Dong, Aimei, et al.
Publicado: (2021) -
Discriminant Subspace Low-Rank Representation Algorithm for Electroencephalography-Based Alzheimer’s Disease Recognition
por: Tang, Tusheng, et al.
Publicado: (2022) -
Subspace structural constraint-based discriminative feature learning via nonnegative low rank representation
por: Li, Ao, et al.
Publicado: (2019) -
Discriminative Learning for Alzheimer's Disease Diagnosis via Canonical Correlation Analysis and Multimodal Fusion
por: Lei, Baiying, et al.
Publicado: (2016) -
Learning from low-rank multimodal representations for predicting disease-drug associations
por: Hu, Pengwei, et al.
Publicado: (2021)