Cargando…
High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network
High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50–80 Hz) remain unclear. In this paper, we investigate different emotional states using function...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7107011/ https://www.ncbi.nlm.nih.gov/pubmed/32265674 http://dx.doi.org/10.3389/fnhum.2020.00089 |
_version_ | 1783512734908809216 |
---|---|
author | Yang, Kai Tong, Li Shu, Jun Zhuang, Ning Yan, Bin Zeng, Ying |
author_facet | Yang, Kai Tong, Li Shu, Jun Zhuang, Ning Yan, Bin Zeng, Ying |
author_sort | Yang, Kai |
collection | PubMed |
description | High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50–80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time–frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception. |
format | Online Article Text |
id | pubmed-7107011 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-71070112020-04-07 High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network Yang, Kai Tong, Li Shu, Jun Zhuang, Ning Yan, Bin Zeng, Ying Front Hum Neurosci Human Neuroscience High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50–80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time–frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception. Frontiers Media S.A. 2020-03-24 /pmc/articles/PMC7107011/ /pubmed/32265674 http://dx.doi.org/10.3389/fnhum.2020.00089 Text en Copyright © 2020 Yang, Tong, Shu, Zhuang, Yan and Zeng. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Human Neuroscience Yang, Kai Tong, Li Shu, Jun Zhuang, Ning Yan, Bin Zeng, Ying High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network |
title | High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network |
title_full | High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network |
title_fullStr | High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network |
title_full_unstemmed | High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network |
title_short | High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network |
title_sort | high gamma band eeg closely related to emotion: evidence from functional network |
topic | Human Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7107011/ https://www.ncbi.nlm.nih.gov/pubmed/32265674 http://dx.doi.org/10.3389/fnhum.2020.00089 |
work_keys_str_mv | AT yangkai highgammabandeegcloselyrelatedtoemotionevidencefromfunctionalnetwork AT tongli highgammabandeegcloselyrelatedtoemotionevidencefromfunctionalnetwork AT shujun highgammabandeegcloselyrelatedtoemotionevidencefromfunctionalnetwork AT zhuangning highgammabandeegcloselyrelatedtoemotionevidencefromfunctionalnetwork AT yanbin highgammabandeegcloselyrelatedtoemotionevidencefromfunctionalnetwork AT zengying highgammabandeegcloselyrelatedtoemotionevidencefromfunctionalnetwork |