Cargando…

Age-specific and sex-specific morbidity and mortality from avian influenza A(H7N9)

We used data on age and sex for 136 laboratory confirmed human A(H7N9) cases reported as of 11 August 2013 to compare age-specific and sex-specific patterns of morbidity and mortality from the avian influenza A(H7N9) virus with those of the avian influenza A(H5N1) virus. Human A(H7N9) cases exhibit...

Descripción completa

Detalles Bibliográficos
Autores principales: Dudley, Joseph P., Mackay, Ian M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108379/
https://www.ncbi.nlm.nih.gov/pubmed/24091087
http://dx.doi.org/10.1016/j.jcv.2013.09.004
Descripción
Sumario:We used data on age and sex for 136 laboratory confirmed human A(H7N9) cases reported as of 11 August 2013 to compare age-specific and sex-specific patterns of morbidity and mortality from the avian influenza A(H7N9) virus with those of the avian influenza A(H5N1) virus. Human A(H7N9) cases exhibit high degrees of age and sex bias: mortality is heavily biased toward males >50 years, no deaths have been reported among individuals <25 years old, and relatively few cases documented among children or adolescents. The proportion of fatal cases (PFC) for human A(H7N9) cases as of 11 August 2013 was 32%, compared to a cumulative PFC for A(H5N1) of 83% in Indonesia and 36% in Egypt. Approximately 75% of cases of all A(H7N9) cases occurred among individuals >45 years old. Morbidity and mortality from A(H7N9) are lowest among individuals between 10 and 29 years, the age group which exhibits the highest cumulative morbidity and case fatality rates from A(H5N1). Although individuals <20 years old comprise nearly 50% of all human A(H5N1) cases, only 7% of all reported A(H7N9) cases and no deaths have been reported among individuals in this age group. Only 4% of A(H7N9) cases occurred among children < 5 years old, and only one case from the 10 to 20 year age group. Age- and sex-related differences in morbidity and mortality from emerging zoonotic diseases can provide insights into ecological, economic, and cultural factors that may contribute to the emergence and proliferation of novel zoonotic diseases in human populations.