Cargando…
Reaction‐Superdiffusion Systems in Epidemiology, an Application of Fractional Calculus
Spatially extended stochastic processes in epidemiology lead to classical reaction‐diffusion process, when infection spreads only locally. This notion can be generalized using fractional derivatives, especially fractional Laplacian operators, leading to Lévy flights and sub‐ or super‐diffusion. Espe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Institute of Physics
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108770/ https://www.ncbi.nlm.nih.gov/pubmed/32255865 http://dx.doi.org/10.1063/1.3241397 |
Sumario: | Spatially extended stochastic processes in epidemiology lead to classical reaction‐diffusion process, when infection spreads only locally. This notion can be generalized using fractional derivatives, especially fractional Laplacian operators, leading to Lévy flights and sub‐ or super‐diffusion. Especially super‐diffusion is a more realistic mechanism of spreading epidemics than ordinary diffusion. |
---|