Cargando…

Reaction‐Superdiffusion Systems in Epidemiology, an Application of Fractional Calculus

Spatially extended stochastic processes in epidemiology lead to classical reaction‐diffusion process, when infection spreads only locally. This notion can be generalized using fractional derivatives, especially fractional Laplacian operators, leading to Lévy flights and sub‐ or super‐diffusion. Espe...

Descripción completa

Detalles Bibliográficos
Autores principales: Stollenwerk, Nico, Pedro Boto, João
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Institute of Physics 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108770/
https://www.ncbi.nlm.nih.gov/pubmed/32255865
http://dx.doi.org/10.1063/1.3241397
Descripción
Sumario:Spatially extended stochastic processes in epidemiology lead to classical reaction‐diffusion process, when infection spreads only locally. This notion can be generalized using fractional derivatives, especially fractional Laplacian operators, leading to Lévy flights and sub‐ or super‐diffusion. Especially super‐diffusion is a more realistic mechanism of spreading epidemics than ordinary diffusion.