Cargando…
On nonstandard finite difference schemes in biosciences
We design, analyze and implement nonstandard finite difference (NSFD) schemes for some differential models in biosciences. The NSFD schemes are reliable in three directions. They are topologically dynamically consistent for onedimensional models. They can replicate the global asymptotic stability of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Institute of Physics
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108777/ https://www.ncbi.nlm.nih.gov/pubmed/32255872 http://dx.doi.org/10.1063/1.4758961 |
_version_ | 1783512843647188992 |
---|---|
author | Anguelov, R. Dumont, Y. Lubuma, J. M.-S. |
author_facet | Anguelov, R. Dumont, Y. Lubuma, J. M.-S. |
author_sort | Anguelov, R. |
collection | PubMed |
description | We design, analyze and implement nonstandard finite difference (NSFD) schemes for some differential models in biosciences. The NSFD schemes are reliable in three directions. They are topologically dynamically consistent for onedimensional models. They can replicate the global asymptotic stability of the disease-free equilibrium of the MSEIR model in epidemiology whenever the basic reproduction number is less than 1. They preserve the positivity and boundedness property of solutions of advection-reaction and reaction-diffusion equations. |
format | Online Article Text |
id | pubmed-7108777 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | American Institute of Physics |
record_format | MEDLINE/PubMed |
spelling | pubmed-71087772020-04-01 On nonstandard finite difference schemes in biosciences Anguelov, R. Dumont, Y. Lubuma, J. M.-S. AIP Conf Proc Article We design, analyze and implement nonstandard finite difference (NSFD) schemes for some differential models in biosciences. The NSFD schemes are reliable in three directions. They are topologically dynamically consistent for onedimensional models. They can replicate the global asymptotic stability of the disease-free equilibrium of the MSEIR model in epidemiology whenever the basic reproduction number is less than 1. They preserve the positivity and boundedness property of solutions of advection-reaction and reaction-diffusion equations. American Institute of Physics 2012-10-02 /pmc/articles/PMC7108777/ /pubmed/32255872 http://dx.doi.org/10.1063/1.4758961 Text en All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Anguelov, R. Dumont, Y. Lubuma, J. M.-S. On nonstandard finite difference schemes in biosciences |
title | On nonstandard finite difference schemes in biosciences |
title_full | On nonstandard finite difference schemes in biosciences |
title_fullStr | On nonstandard finite difference schemes in biosciences |
title_full_unstemmed | On nonstandard finite difference schemes in biosciences |
title_short | On nonstandard finite difference schemes in biosciences |
title_sort | on nonstandard finite difference schemes in biosciences |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108777/ https://www.ncbi.nlm.nih.gov/pubmed/32255872 http://dx.doi.org/10.1063/1.4758961 |
work_keys_str_mv | AT anguelovr onnonstandardfinitedifferenceschemesinbiosciences AT dumonty onnonstandardfinitedifferenceschemesinbiosciences AT lubumajms onnonstandardfinitedifferenceschemesinbiosciences |