Cargando…
Multi-resolution convolutional neural networks for inverse problems
Inverse problems in image processing, phase imaging, and computer vision often share the same structure of mapping input image(s) to output image(s) but are usually solved by different application-specific algorithms. Deep convolutional neural networks have shown great potential for highly variable...
Autores principales: | Wang, Feng, Eljarrat, Alberto, Müller, Johannes, Henninen, Trond R., Erni, Rolf, Koch, Christoph T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109091/ https://www.ncbi.nlm.nih.gov/pubmed/32235861 http://dx.doi.org/10.1038/s41598-020-62484-z |
Ejemplares similares
-
Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in-situ liquid cell STEM
por: Dachraoui, Walid, et al.
Publicado: (2021) -
Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images
por: Wang, Feng, et al.
Publicado: (2020) -
Partial Discharge Recognition with a Multi-Resolution Convolutional Neural Network
por: Li, Gaoyang, et al.
Publicado: (2018) -
The Face Inversion Effect in Deep Convolutional Neural Networks
por: Tian, Fang, et al.
Publicado: (2022) -
Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images
por: Mukherjee, Lopamudra, et al.
Publicado: (2019)