Cargando…

Turbocharging introgression breeding of perennial fruit crops: a case study on apple

The allelic diversity of primitive germplasm of fruit crops provides a useful resource for introgressing novel genes to meet consumer preferences and environmental challenges. Pre-breeding facilitates the identification of novel genetic variation in the primitive germplasm and expedite its utilisati...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Satish, Hilario, Elena, Deng, Cecilia H., Molloy, Claire
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109137/
https://www.ncbi.nlm.nih.gov/pubmed/32257233
http://dx.doi.org/10.1038/s41438-020-0270-z
Descripción
Sumario:The allelic diversity of primitive germplasm of fruit crops provides a useful resource for introgressing novel genes to meet consumer preferences and environmental challenges. Pre-breeding facilitates the identification of novel genetic variation in the primitive germplasm and expedite its utilisation in cultivar breeding programmes. Several generations of pre-breeding could be required to minimise linkage drag from the donor parent and to maximise the genomic content of the recipient parent. In this study we investigated the potential of genomic selection (GS) as a tool for rapid background selection of parents for the successive generation. A diverse set of 274 accessions was genotyped using random-tag genotyping-by-sequencing, and phenotyped for eight fruit quality traits. The relationship between ‘own phenotypes’ of 274 accessions and their general combining ability (GCA) was also examined. Trait heritability influenced the strength of correspondence between own phenotype and the GCA. The average (across eight traits) accuracy of predicting own phenotype was 0.70, and the correlations between genomic-predicted own phenotype and GCA were similar to the observed correlations. Our results suggest that genome-assisted parental selection (GAPS) is a credible alternative to phenotypic parental selection, so could help reduce the generation interval to allow faster accumulation of favourable alleles from donor and recipient parents.