Cargando…
Over 14% Efficiency Folding-Flexible ITO-free Organic Solar Cells Enabled by Eco-friendly Acid-Processed Electrodes
Environment-friendly manufacturing and mechanical robustness are imperative for commercialization of flexible OSCs as green-energy source, especially in portable and wearable self-powered flexible electronics. Although, the commonly adopted PEDOT:PSS electrodes that are treated with severely corrosi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109630/ https://www.ncbi.nlm.nih.gov/pubmed/32224434 http://dx.doi.org/10.1016/j.isci.2020.100981 |
Sumario: | Environment-friendly manufacturing and mechanical robustness are imperative for commercialization of flexible OSCs as green-energy source, especially in portable and wearable self-powered flexible electronics. Although, the commonly adopted PEDOT:PSS electrodes that are treated with severely corrosive and harmful acid lack foldability. Herein, efficient folding-flexible OSCs with highly conductive and foldable PEDOT:PSS electrodes processed with eco-friendly cost-effective acid and polyhydroxy compound are demonstrated. The acid treatment endows PEDOT:PSS electrodes with high conductivity. Meanwhile, polyhydroxy compound doping contributes to excellent bending flexibility and foldability due to the better film adhesion between PEDOT:PSS and PET substrate. Accordingly, folding-flexible OSCs with high efficiency of 14.17% were achieved. After 1,000 bending or folding cycles, the device retained over 90% or 80% of its initial efficiency, respectively. These results represent one of the best performances for ITO-free flexible OSC reported so far and demonstrate a novel approach toward commercialized efficient and foldable green-processed OSCs. |
---|