Cargando…
A novel strategy for dynamic identification in AC/DC microgrids based on ARX and Petri Nets
This paper presents a new hybrid strategy which allows the dynamic identification of AC/DC microgrids (MG) by using algorithms such as Auto-Regressive with exogenous inputs (ARX) and Petri Nets (PN). The proposed strategy demonstrated in this study serves to obtain a dynamic model of the DC MG in is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109634/ https://www.ncbi.nlm.nih.gov/pubmed/32258454 http://dx.doi.org/10.1016/j.heliyon.2020.e03559 |
Sumario: | This paper presents a new hybrid strategy which allows the dynamic identification of AC/DC microgrids (MG) by using algorithms such as Auto-Regressive with exogenous inputs (ARX) and Petri Nets (PN). The proposed strategy demonstrated in this study serves to obtain a dynamic model of the DC MG in isolated or connected modes. Given the non-linear nature of the system under study, the methodology divides the whole system in a bank of linearized models at different stable operating points, coordinated by a PN state machine. The bank of models obtained in state space, together with an adequate selection of models, can capture and reflect the non-linear dynamic properties of the AD/DC MGs and the different systems that it composes. The performance of the proposed algorithm has been tested using the Matlab/Simulink simulation platform. |
---|