Cargando…
Detection of viromes of RNA viruses using the next generation sequencing libraries prepared by three methods
Virome (viral megagenomics) detection using next generation sequencing has been widely applied in virology, but its methods remain complicated and need optimization. In this study, we detected the viromes of RNA viruses of one mock sample, one pooled duck feces sample and one pooled mink feces sampl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111271/ https://www.ncbi.nlm.nih.gov/pubmed/28501627 http://dx.doi.org/10.1016/j.virusres.2017.05.003 |
Sumario: | Virome (viral megagenomics) detection using next generation sequencing has been widely applied in virology, but its methods remain complicated and need optimization. In this study, we detected the viromes of RNA viruses of one mock sample, one pooled duck feces sample and one pooled mink feces sample on the Personal Genome Machine platform using the sequencing libraries prepared by three methods. The sequencing primers were added through random hybridization and ligation to fragmented viral RNA using a RNA-Seq kit in method 1, through random reverse transcription (RT) and polymerase chain reaction (PCR) in method 2 which was developed in our laboratory, and through hybridization and ligation to fragmented amplicons of random RT-PCR using a single primer in method 3. Although the results of these three samples (nine libraries) all showed that more classified viral families and genera were identified using methods 2 and 3 than using method 1, and more classified viral families and genera were identified using method 2 than using method 3, most of the differences were of no statistical significance. Moreover, 11 mammalian viral genera in minks were possibly identified for the first time through this study. |
---|