Cargando…

Syntenin is involved in the bacteria clearance response of kuruma shrimp (Marsupenaeus japonicus)

Syntenin is a multifunctional cytosolic adaptor protein that contributes to cell migration, proliferation, attachment, and apoptosis, as well as immune response to virus, in vertebrates. However, the functions of syntenin in the antibacterial response of invertebrates remain unclear. In this study,...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Qian, Chen, Xiao-wei, Che, Chun-jing, Ding, Ding, Kang, Cui-jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111636/
https://www.ncbi.nlm.nih.gov/pubmed/25731918
http://dx.doi.org/10.1016/j.fsi.2015.02.016
Descripción
Sumario:Syntenin is a multifunctional cytosolic adaptor protein that contributes to cell migration, proliferation, attachment, and apoptosis, as well as immune response to virus, in vertebrates. However, the functions of syntenin in the antibacterial response of invertebrates remain unclear. In this study, we identified a syntenin-like gene (MjSyn) from the kuruma shrimp (Marsupenaeus japonicus) and detected its function in the antibacterial immunity of shrimp. The full-length MjSyn was 1223 bp with a 963 bp open reading frame that encodes 320 amino acids. The deduced MjSyn proteins contained two atypical PDZ domains (sequence repeat that was first reported in the postsynaptic density protein or PSD-95, DlgA, and ZO-1 protein), an N-terminal domain, and a C-terminal domain. Reverse transcription (RT)-PCR results showed that MjSyn was expressed in all tested tissues. Quantitative real-time PCR analysis revealed that MjSyn transcripts in the hemocyte, gill, and intestine were significantly induced at various time points after infection with Staphylococcus aureus and Vibrio anguillarum. The knockdown of the expression of MjSyn by RNA interference resulted in a significant decrease in the phagocytic ability and increased bacteria number in vivo of shrimp. Moreover, the expression of MjCnx, a cytoplasma and membrane location lectin chaperone protein, was inhibited in the MjSyn-knocked down shrimp, which indicated a possible calnexin-related way. Thus, the MjSyn participates in the bacterial clearance response of kuruma shrimp, thereby providing new insight into the function of this kind of important adaptor protein.