Cargando…
Inhibition of Cyclophilin A on the replication of red spotted grouper nervous necrosis virus associates with multiple pro-inflammatory factors
Cyclophilin A (CypA) is a ubiquitously expressed cellular protein and involves in diverse pathological conditions, including infection and inflammation. CypA acts as a key factor in the replication of several viruses. However, little is known about the role of CypA in the replication of the red-spot...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111709/ https://www.ncbi.nlm.nih.gov/pubmed/31176008 http://dx.doi.org/10.1016/j.fsi.2019.05.064 |
Sumario: | Cyclophilin A (CypA) is a ubiquitously expressed cellular protein and involves in diverse pathological conditions, including infection and inflammation. CypA acts as a key factor in the replication of several viruses. However, little is known about the role of CypA in the replication of the red-spotted grouper nervous necrosis virus (RGNNV). In the present report, grouper CypA (GF-CypA) was cloned from the grouper fin cell line (GF-1) derived from orange-spotted grouper (Epinephelus coioides). Sequence analysis found that GF-CypA open reading frame (ORF) of 495 bp encodes a polypeptide of 164 amino acids residues with a molecular weight of 17.4 kDa. The deduced amino acid sequence shared highly conserved regions with CypA of other animal species, showing that GF-CypA is a new member of Cyclophilin A family. We observed that GF-CypA was up-regulated in the GF-1 cells infected with RGNNV. Additionally, overexpression of CypA could significantly inhibit the replication of RGNNV in GF-1 cells. By contrast, when the GF-CypA was knock-downed by siRNA in GF-1 cells, the replication of RGNNV was enhanced. Furthermore, the expressions of pro-inflammatory factors, such as TNF-2, TNF-α, IL-1b, and ISG-15, were increased in GF-CypA transfected GF-1 cells challenged with RGNNV, indicating that GF-CypA might be involved in the regulation of the host pro-inflammatory factors. Altogether, we conclude that GF-CypA plays a vital role in the inhibitory effect of RGNNV replication that might be modulating the cytokines secretion in GF-1 cells during RGNNV infection. These results will shed new light on the function of CypA in the replication of RGNNV and will pave a new way for the prevention of the infection of RGNNV in fish. |
---|