Cargando…
Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine
Although the recent SARS coronavirus (SARS-CoV) that appeared in 2002 has now been contained, the possibility of re-emergence of SARS-CoV remains. Due to the threat of re-emergence, the overall fatality rate of ∼10%, and the rapid dispersion of the virus via international travel, viable vaccine cand...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111745/ https://www.ncbi.nlm.nih.gov/pubmed/16043204 http://dx.doi.org/10.1016/j.virol.2005.06.016 |
Sumario: | Although the recent SARS coronavirus (SARS-CoV) that appeared in 2002 has now been contained, the possibility of re-emergence of SARS-CoV remains. Due to the threat of re-emergence, the overall fatality rate of ∼10%, and the rapid dispersion of the virus via international travel, viable vaccine candidates providing protection from SARS are clearly needed. We developed an attenuated VSV recombinant (VSV-S) expressing the SARS coronavirus (SARS-CoV) spike (S) protein. In cells infected with this recombinant, S protein was synthesized, glycosylated at approximately 17 Asn residues, and transported via the Golgi to the cell surface. Mice vaccinated with VSV-S developed SARS-neutralizing antibody and were able to control a challenge with SARS-CoV performed at 1 month or 4 months after a single vaccination. We also demonstrated, by passive antibody transfer, that the antibody response induced by the vaccine was sufficient for controlling SARS-CoV infection. A VSV-vectored SARS vaccine could have significant advantages over other SARS vaccine candidates described to date. |
---|