Cargando…

Group-specific structural features of the 5′-proximal sequences of coronavirus genomic RNAs

Global predictions of the secondary structure of coronavirus (CoV) 5′ untranslated regions and adjacent coding sequences revealed the presence of conserved structural elements. Stem loops (SL) 1, 2, 4, and 5 were predicted in all CoVs, while the core leader transcription-regulating sequence (L-TRS)...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Shih-Cheng, Olsthoorn, René C.L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111916/
https://www.ncbi.nlm.nih.gov/pubmed/20202661
http://dx.doi.org/10.1016/j.virol.2010.02.007
Descripción
Sumario:Global predictions of the secondary structure of coronavirus (CoV) 5′ untranslated regions and adjacent coding sequences revealed the presence of conserved structural elements. Stem loops (SL) 1, 2, 4, and 5 were predicted in all CoVs, while the core leader transcription-regulating sequence (L-TRS) forms SL3 in only some CoVs. SL5 in group I and II CoVs, with the exception of group IIa CoVs, is characterized by the presence of a large sequence insertion capable of forming hairpins with the conserved 5′-UUYCGU-3′ loop sequence. Structure probing confirmed the existence of these hairpins in the group I Human coronavirus-229E and the group II Severe acute respiratory syndrome coronavirus (SARS-CoV). In general, the pattern of the 5′ cis-acting elements is highly related to the lineage of CoVs, including features of the conserved hairpins in SL5. The function of these conserved hairpins as a putative packaging signal is discussed.