Cargando…
A long-distance RNA–RNA interaction plays an important role in programmed − 1 ribosomal frameshifting in the translation of p88 replicase protein of Red clover necrotic mosaic virus
Programmed − 1 ribosomal frameshifting (− 1 PRF) is one viral translation strategy to express overlapping genes in positive-strand RNA viruses. Red clover necrotic mosaic virus (RCNMV) uses this strategy to express its replicase component protein p88. In this study, we used a cell-free translation s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111920/ https://www.ncbi.nlm.nih.gov/pubmed/21703656 http://dx.doi.org/10.1016/j.virol.2011.05.012 |
Sumario: | Programmed − 1 ribosomal frameshifting (− 1 PRF) is one viral translation strategy to express overlapping genes in positive-strand RNA viruses. Red clover necrotic mosaic virus (RCNMV) uses this strategy to express its replicase component protein p88. In this study, we used a cell-free translation system to map cis-acting RNA elements required for − 1 PRF. Our results show that a small stem-loop structure adjacent to the cap-independent translation element in the 3′ untranslated region (UTR) of RCNMV RNA1 is required for − 1 PRF. Site-directed mutagenesis experiments suggested that this stem-loop regulates − 1 PRF via base-pairing with complementary sequences in a bulged stem-loop adjacent to the shifty site. The existence of RNA elements responsible for − 1 PRF and the cap-independent translation of replicase proteins in the 3′ UTR of RNA1 might be important for switching translation to replication and for regulating the ratio of p88 to p27. |
---|