Cargando…

Epidemic Spread on One-Way Circular-Coupled Networks

Real epidemic spreading networks are often composed of several kinds of complex networks interconnected with each other, such as Lyme disease, and the interrelated networks may have different topologies and epidemic dynamics. Moreover, most human infectious diseases are derived from animals, and zoo...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zhongpu, Fu, Xinchu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111949/
https://www.ncbi.nlm.nih.gov/pubmed/32287713
http://dx.doi.org/10.1007/s10473-019-0618-3
Descripción
Sumario:Real epidemic spreading networks are often composed of several kinds of complex networks interconnected with each other, such as Lyme disease, and the interrelated networks may have different topologies and epidemic dynamics. Moreover, most human infectious diseases are derived from animals, and zoonotic infections always spread on directed interconnected networks. So, in this article, we consider the epidemic dynamics of zoonotic infections on a unidirectional circular-coupled network. Here, we construct two unidirectional three-layer circular interactive networks, one model has direct contact between interactive networks, the other model describes diseases transmitted through vectors between interactive networks, which are established by introducing the heterogeneous mean-field approach method. Then we obtain the basic reproduction numbers and stability of equilibria of the two models. Through mathematical analysis and numerical simulations, it is found that basic reproduction numbers of the models depend on the infection rates, infection periods, average degrees, and degree ratios. Numerical simulations illustrate and expand these theoretical results very well.