Cargando…

Coronavirus cis-Acting RNA Elements

Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primaril...

Descripción completa

Detalles Bibliográficos
Autores principales: Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112319/
https://www.ncbi.nlm.nih.gov/pubmed/27712622
http://dx.doi.org/10.1016/bs.aivir.2016.08.007
Descripción
Sumario:Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5′- and 3′-terminal genome regions and upstream of the open reading frames located in the 3′-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA–RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.